SEARCH

SEARCH BY CITATION

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. The Plant Cell 15: 6378.
  • Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K. 1997. Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression. The Plant Cell 9: 18591868.
  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K. 2004. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. The Plant Cell 16: 34603479.
  • Asselbergh B, De Vleesschauwer D, Höfte M. 2008. Global switches and fine-tuning – ABA modulates plant pathogen defense. Molecular Plant–Microbe Interactions 21: 709719.
  • Berger S, Bell E, Mullet JE. 1996. Two methyl jasmonate-insensitive mutants show altered expression of AtVsp in response to methyl jasmonate and wounding. Plant Physiology 111: 525531.
  • Boter M, Ruiz-Rivero O, Abdeen A, Pratt S. 2004. Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes and Development 18: 15771591.
  • Cao H, Bowling SA, Gordon AS, Dong X. 1994. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. The Plant Cell 6: 15831592.
  • Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano FM, Ponce MR et al . 2007. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448: 666671.
  • Conrath U, Beckers GJM, Flors V, García-Agustín P, Jakab G, Mauch F, Newman M-A, Pieterse CMJ, Poinssot B, Pozo MJ et al . 2006. Priming: getting ready for battle. Molecular Plant–Microbe Interactions 19: 10621071.
  • Conrath U, Pieterse CMJ, Mauch-Mani B. 2002. Priming in plant-pathogen interactions. Trends in Plant Science 7: 210216.
  • Czechowski T, Bari RP, Stitt M, Scheible WR, Udvardi MK. 2004. Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. Plant Journal 38: 366379.
  • De Pater S, Pham K, Mememlink J, Kijne J. 1997. RAP-1 is an Arabidopsis MYC-like R protein homologue that binds to G-box sequence motifs. Plant Molecular Biology 34: 169174.
  • De Vos M, Van Oosten VR, Van Poecke RMP, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Métraux JP, Van Loon LC, Dicke M et al . 2005. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Molecular Plant–Microbe Interactions 18: 923937.
  • Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, Fitt GP, Sewelam N, Schenk PM, Manners JM et al . 2007. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. The Plant Cell 19: 22252245.
  • Durrant WE, Dong X. 2004. Systemic acquired resistance. Annual Review of Phytopathology 42: 185209.
  • Ellis C, Turner JG. 2002. A conditionally fertile coi1 allele indicates cross-talk between plant hormone signaling pathways in Arabidopsis thaliana seeds and young seedlings. Planta 215: 549556.
  • Frost CJ, Mescher MC, Carlson JE, De Moraes CM. 2008. Plant defense priming against herbivores: getting ready for a different battle. Plant Physiology 146: 818824.
  • Hara-Nishimura I, Matsushima R. 2003. A wound-inducible organelle derived from endoplasmic reticulum: a plant strategy against environmental stresses? Current Opinion in Plant Biology 6: 583588.
  • Hase S, Van Pelt JA, Van Loon LC, Pieterse CMJ. 2003. Colonization of Arabidopsis roots by Pseudomonas fluorescens primes the plant to produce higher levels of ethylene upon pathogen infection. Physiological and Molecular Plant Pathology 62: 219226.
  • Heil M. 2002. Ecological costs of induced resistance. Current Opinion in Plant Biology 5: 345350.
  • Heil M, Silva Bueno JC. 2007. Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proceedings of the National Academy of Sciences, USA 104: 54675472.
  • Howe GA. 2004. Jasmonates as signals in the wound response. Journal of Plant Growth Regulation 23: 223237.
  • Kankainen M, Holm L. 2004. POBO, transcription factor binding site verification with bootstrapping. Nucleic Acids Research 32: 222229.
  • Katagiri F. 2004. A global view of defense gene expression regulation – a highly interconnected signaling network. Current Opinion in Plant Biology 7: 506511.
  • Koornneef A, Leon-Reyes A, Ritsema T, Verhage A, Den Otter FC, Van Loon LC, Pieterse CMJ. 2008. Cross-talk between salicylate- and jasmonate-dependent defense pathways in Arabidopsis is associated with changes in the redox status. Plant Physiology 147: 13581368.
  • Koornneef A, Pieterse CMJ. 2008. Cross-talk in defense signaling. Plant Physiology 146: 839844.
  • Laurie-Berry N, Joardar V, Street IH, Kunkel BN. 2006. The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae. Molecular Plant–Microbe Interactions 19: 789800.
  • Léon-Kloosterziel KM, Verhagen BWM, Keurentjes JJB, Van Pelt JA, Rep M, Van Loon LC, Pieterse CMJ. 2005. Colonization of the Arabidopsis rhizosphere by fluorescent Pseudomonas spp. activates a root-specific, ethylene-responsive PR-5 gene in the vascular bundle. Plant Molecular Biology 57: 731748.
  • Livak K, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCT method. Methods 25: 402408.
  • Lorenzo O, Chico JM, Sanchez-Serrano JJ, Solano R. 2004. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16: 19381950.
  • Lorenzo O, Solano R. 2005. Molecular players regulating the jasmonate signalling network. Current Opinion in Plant Biology 8: 532540.
  • Matsushima R, Kondo M, Nishimura M, Hara-Nishimura I. 2003. A novel ER-derived compartment, the ER body, selectively accumulates a β-glucosidase with an ER-retention signal in Arabidopsis. Plant Journal 33: 493502.
  • Mur LAJ, Kenton P, Atzorn R, Miersch O, Wasternack C. 2006. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiology 140: 249262.
  • Nickstadt A, Thomma BPHJ, Feussner I, Kangasjarvi J, Zeier J, Loeffler C, Scheel D, Berger S. 2004. The jasmonate-insensitive mutant jin1 shows increased resistance to biotrophic as well as necrotrophic pathogens. Molecular Plant Pathology 5: 425434.
  • O’Connor TR, Dyreson C, Wyrick JJ. 2005. Athena: a resource for rapid visualization and systematic analysis of Arabidopsis promoter sequences. Bioinformatics 21: 44114413.
  • Oppenheimer DG, Herman PL, Sivakumaran S, Esch J, Marks MD. 1991. A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell 67: 483493.
  • Pieterse CMJ, Dicke M. 2007. Plant interactions with microbes and insects: from molecular mechanisms to ecology. Trends in Plant Science 12: 564569.
  • Pieterse CMJ, Van Pelt JA, Ton J, Parchmann S, Mueller MJ, Buchala AJ, Métraux J-P, Van Loon LC. 2000. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiological and Molecular Plant Pathology 57: 123134.
  • Pieterse CMJ, Van Wees SCM, Hoffland E, Van Pelt JA, Van Loon LC. 1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. The Plant Cell 8: 12251237.
  • Pieterse CMJ, Van Wees SCM, Van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, Van Loon LC. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. The Plant Cell 10: 15711580.
  • Pozo MJ, Van Loon LC, Pieterse CMJ. 2004. Jasmonates – signals in plant-microbe interactions. Journal of Plant Growth Regulation 23: 211222.
  • Redman JC, Haas BJ, Tanimoto G, Town CD. 2004. Development and evaluation of an Arabidopsis whole genome Affymetrix probe array. Plant Journal 38: 545561.
  • Reymond P, Farmer EE. 1998. Jasmonate and salicylate as global signals for defense gene expression. Current Opinion in Plant Biology 1: 404411.
  • Rojo E, Solano R, Sanchez-Serrano JJ. 2003. Interactions between signaling compounds involved in plant defense. Journal of Plant Growth Regulation 22: 8298.
  • Rombauts S, Florquin K, Lescot M, Marchal K, Rouze P, Van de Peer Y. 2003. Computational approaches to identify promoters and cis-regulatory elements in plant genomes. Plant Physiology 132: 11621176.
  • Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: a laboratory manual, 2nd edition. Cold Spring Harbor, NY. USA: Cold Spring Harbor Laboratory Press.
  • Sasaki Y, Asamizu E, Shibata D, Nakamura Y, Kaneko T, Awai K, Amagai M, Kuwata C, Tsugane T, Masuda T et al . 2001. Monitoring of methyl jasmonate-responsive genes in Arabidopsis by cDNA macroarray: self-activation of jasmonic acid biosynthesis and crosstalk with other phytohormone signaling pathways. DNA Research 8: 153161.
  • Sherameti I, Venus Y, Drzewiecki C, Tripathi S, Mohan Dan V, Nitz I, Varma A, Grundler FM, Oelmüller R. 2008. PYK10, a β-glucosidase located in the endoplasmatic reticulum, is crucial for the beneficial interaction between Arabidopsis thaliana and the endophytic fungus Piriformospora indica. Plant Journal 54: 428439.
  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J. 2007. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448: 661665.
  • Ton J, Jakab G, Toquin V, Flors V, Iavicoli A, Maeder MN, Métraux J-P, Mauch-Mani B. 2005. Dissecting the ß-aminobutyric acid-induced priming phenomenon in Arabidopsis. The Plant Cell 17: 987999.
  • Van der Ent S. 2008. Transcriptional regulators of rhizobacteria-induced systemic resistance. PhD thesis. Utrecht, the Netherlands: Utrecht University.
  • Van der Ent S, Verhagen BWM, Van Doorn R, Bakker D, Verlaan MG, Pel MJC, Joosten RG, Proveniers MCG, Van Loon LC, Ton J et al . 2008. MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiology 146: 12931304.
  • Van Hulten M, Pelser M, Van Loon LC, Pieterse CMJ, Ton J. 2006. Costs and benefits of priming for defense in Arabidopsis. Proceedings of the National Academy of Sciences, USA 103: 56025607.
  • Van Loon LC, Bakker PAHM, Pieterse CMJ. 1998. Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology 36: 453483.
  • Van Loon LC, Geraats BPJ, Linthorst HJM. 2006a. Ethylene as a modulator of disease resistance in plants. Trends in Plant Science 11: 184191.
  • Van Loon LC, Rep M, Pieterse CMJ. 2006b. Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology 44: 135162.
  • Van Oosten VR, Bodenhausen N, Reymond P, Van Pelt JA, Van Loon LC, Dicke M, Pieterse CMJ. 2008. Differential effectiveness of microbially induced resistance against herbivorous insects in Arabidopsis. Molecular Plant–Microbe Interactions 21: 919930.
  • Van Poecke RMP, Dicke M. 2004. Indirect defence of plants against herbivores: using Arabidopsis thaliana as a model plant. Plant Biology 6: 387401.
  • Van Wees SCM, Luijendijk M, Smoorenburg I, Van Loon LC, Pieterse CMJ. 1999. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Molecular Biology 41: 537549.
  • Van Wees SCM, Van der Ent S, Pieterse CMJ. 2008. Plant immune responses triggered by beneficial microbes. Current Opinion in Plant Biology, doi: 10.1016/j.pbi.2008.05.005
  • Verhagen BWM, Glazebrook J, Zhu T, Chang H-S, Van Loon LC, Pieterse CMJ. 2004. The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Molecular Plant–Microbe Interactions 17: 895908.
  • Walters D, Newton A, Lyon G. 2007. Induced resistance for plant defence: a sustainable approach to crop protection. Oxford,UK: Blackwell.
  • Wang D, Amornsiripanitch N, Dong X. 2006. A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathogens 2: 10421050.
  • Weigel RR, Bauscher C, Pfitzner AJ, Pfitzner UM. 2001. NIMIN-1, NIMIN-2 and NIMIN-3, members of a novel family of proteins from Arabidopsis that interact with NPR1/NIM1, a key regulator of systemic acquired resistance in plants. Plant Molecular Biology 46: 143160.
  • Whalen MC, Innes RW, Bent AF, Staskawicz BJ. 1991. Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. The Plant Cell 3: 4959.