SEARCH

SEARCH BY CITATION

References

  • Assunção AGL, Da Costa Martins P, De Folter S, Vooijs R, Schat H, Aarts MGM. 2001. Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant, Cell & Environment 24: 217.
  • Baker AJM, Proctor J, Van Balgooy MMJ, Reeves DR 1992. Hyperaccumulation of nickel by the flora of the ultramafics of Palawan, republic of the Philippines. In: BakerAJM, ProctorJ, ReevesDR, eds. The vegetation of ultramafic (serpentine) soils. Proceedings of the first international conference on serpentine ecology. Andover, UK: Intercept, 291304.
  • Becher M, Talke IN, Krall L, Krämer U. 2004. Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant Journal 37: 251268.
  • Belouchi A, Kwan T, Gros P. 1997. Cloning and characterization of the Osnramp family from Oryza sativa, a new family of membrane proteins possibly implicated in the transport of metal ions. Plant Molecular Biology 33: 10851092.
  • Bereczky Z, Wang HY, Schubert V, Ganal M, Bauer P. 2003. Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato. The Journal of Biological Chemistry 278: 2469724704.
  • Bernard C, Roosens N, Czernic P, Lebrun M, Verbruggen N. 2004. A novel cpx-atpase from the cadmium hyperaccumulator Thlaspi caerulescens. FEBS Letters 569: 140148.
  • Bert V, Macnair MR, De Laguerie P, Saumitou-Laprade P, Petit D. 2000. Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis halleri (Brassicaceae). New Phytologist 146: 225233.
  • Brooks RR 1994. Plants that hyperaccumulate heavy metals. In: FaragoME, ed. Plants and the chemical elements. Weinheim, Germany: VCH, 87107.
  • Brown SL, Chaney RL, Angle JS, Baker AJM. 1995. Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Science Society of America Journal 59: 125133.
  • Clemens S. 2001. Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212: 475486.
  • Clough SJ. 2005. Floral dip: Agrobacterium-mediated germ line transformation. Methods in Molecular Biology 286: 91102.
  • Cobbett C, Goldsbrough P. 2002. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology 53: 159182.
  • Curie C, Alonso JM, Le Jean M, Ecker JR, Briat JF. 2000. Involvement of nramp1 from Arabidopsis thaliana in iron transport. The Biochemical Journal 347 (Pt 3): 749755.
  • Davis SJ, Vierstra RD. 1998. Soluble, highly fluorescent variants of green fluorescent protein (gfp) for use in higher plants. Plant Molecular Biology 36: 521528.
  • Dix DR, Bridgham JT, Broderius MA, Byersdorfer CA, Eide DJ. 1994. The fet4 gene encodes the low affinity Fe(II) transport protein of Saccharomyces cerevisiae. The Journal of Biological Chemistry 269: 2609226099.
  • Dräger DB, Desbrosses-Fonrouge AG, Krach C, Chardonnens AN, Meyer RC, Saumitou-Laprade P, Krämer U. 2004. Two genes encoding Arabidopsis halleri mtp1 metal transport proteins co-segregate with zinc tolerance and account for high mtp1 transcript levels. Plant Journal 39: 425439.
  • Eide D, Broderius M, Fett J, Guerinot ML. 1996. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proceedings of the National Academy of Sciences, USA 93: 56245628.
  • Filatov V, Dowdle J, Smirnoff N, Ford-Lloyd B, Newbury HJ, Macnair MR. 2006. Comparison of gene expression in segregating families identifies genes and genomic regions involved in a novel adaptation, zinc hyperaccumulation. Molecular Ecology 15: 30453059.
  • De Folter S, Shchennikova AV, Franken J, Busscher M, Baskar R, Grossniklaus U, Angenent GC, Immink RG. 2006. A bsister mads-box gene involved in ovule and seed development in petunia and Arabidopsis. Plant Journal 47: 934946.
  • Gendre D, Czernic P, Conéjéro G, Pianelli K, Briat JF, Lebrun M, Mari S. 2007. TcYSL3, a member of the YSL gene family from the hyper-accumulator Thlaspi caerulescens, encodes a nicotinamine-Ni/Fe transporter. Plant Journal 49: 115.
  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U. 2008. Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453, 391395.
  • Howden R, Andersen CR, Goldsbrough PB, Cobbett CS. 1995a. A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiology 107: 10671073.
  • Howden R, Goldsbrough PB, Andersen CR, Cobbett CS. 1995b. Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiology 107: 10591066.
  • Kaiser BN, Moreau S, Castelli J, Thomson R, Lambert A, Bogliolo S, Puppo A, Day DA. 2003. The soybean nramp homologue, gmdmt1, is a symbiotic divalent metal transporter capable of ferrous iron transport. Plant Journal 35: 295304.
  • Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB. 1999. The irt1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Molecular Biology 40: 3744.
  • Küpper H, Lombi E, Zhao FJ, McGrath SP. 2000. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212: 7584.
  • Lanquar V, Lelievre F, Barbier-Brygoo H, Thomine S. 2004. Regulation and function of Atnramp4 metal transporter protein. Soil Science and Plant Nutrition 50: 11411150.
  • Lanquar V, Lelievre F, Bolte S, Hames C, Alcon C, Neumann D, Vansuyt G, Curie C, Schroder A, Kramer U et al . 2005. Mobilization of vacuolar iron by Atnramp3 and Atnramp4 is essential for seed germination on low iron. EMBO Journal 24: 40414051.
  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP. 2000. Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytologist 145: 1120.
  • Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D et al . 2001. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiology 126: 16461667.
  • Meerts P, Van Isacker N. 1997. Heavy metal tolerance and accumulation in metallicolous and nonmetallicolous populations of Thlaspi caerulescens from continental europe. Plant Ecology 133: 153159.
  • Mizuno T, Usui K, Horie K, Nosaka S, Mizuno N, Obata H. 2005. Cloning of three zip/nramp transporter genes from a Ni hyperaccumulator plant Thlaspi japonicum and their ni2+-transport abilities. Plant Physiology and Biochemistry 43: 793801.
  • Van De Mortel JE, Almar Villanueva L, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Ver Loren van Themaat E, Koornneef M, Aarts MGM. 2006. Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiology 142: 11271147.
  • Van De Mortel JE, Schat H, Moerland PD, Ver Loren van Themaat E, Van Der Ent S, Blankestijn H, Ghandilyan A, Tsiatsiani S, Aarts MGM. 2008. Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens. Plant, Cell & Environment 31: 301324.
  • Nevo Y, Nelson N. 2006. The nramp family of metal-ion transporters. Biochimica et Biophysica Acta 1763: 609620.
  • Pence NS, Larsen PB, Ebbs SD, Letham DL, Lasat MM, Garvin DF, Eide D, Kochian LV. 2000. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proceedings of the National Academy of Sciences, USA 97: 49564960.
  • Persans MW, Nieman K, Salt DE. 2001. Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proceedings of the National Academy of Sciences, USA 98: 999510000.
  • Pinner E, Gruenheid S, Raymond M, Gros P. 1997. Functional complementation of the yeast divalent cation transporter family smf by nramp2, a member of the mammalian natural resistance-associated macrophage protein family. The Journal of Biological Chemistry 272: 2893328938.
  • Ramesh SA, Shin R, Eide DJ, Schachtman DP. 2003. Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiology 133: 126134.
  • Rigola D, Fiers M, Vurro E, Aarts MGM. 2006. The heavy metal hyperaccumulator Thlaspi caerulescens expresses many species-specific genes, as identified by comparative expressed sequence tag analysis. New Phytologist 170: 753765.
  • Rogers EE, Eide DJ, Guerinot ML. 2000. Altered selectivity in an arabidopsis metal transporter. Proceedings of the National Academy of Sciences, USA 97: 1235612360.
  • Roosens NH, Bernard C, Leplae R, Verbruggen N. 2004. Evidence for copper homeostasis function of metallothionein (mt3) in the hyperaccumulator Thlaspi caerulescens. FEBS Letters 577: 916.
  • Schat H, Llugany M, Bernhard R 2000. Metal-specific patterns of tolerance, uptake, and transport of heavy metals in hyperaccumulating and nonhyperaccumulating metallophytes. In: TerryN, BanuelosG, eds. Phytoremediation of contaminated soils and water. Boca Raton, FL, USA: CRC Press LLC, 171188.
  • Supek F, Supekova L, Nelson H, Nelson N. 1996. A yeast manganese transporter related to the macrophage protein involved in conferring resistance to mycobacteria. Proceedings of the National Academy of Sciences, USA 93: 51055110.
  • Talke IN, Hanikenne M, Krämer U. 2006. Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiology 142: 148167.
  • Thomine S, Lelievre F, Debarbieux E, Schroeder JI, Barbier-Brygoo H. 2003. Atnramp3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. Plant Journal 34: 685695.
  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI. 2000. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to nramp genes. Proceedings of the National Academy of Sciences, USA 97: 49914996.
  • Vert G, Briat JF, Curie C. 2001. Arabidopsis irt2 gene encodes a root-periphery iron transporter. Plant Journal 26: 181189.
  • Vogel-Mikus K, Pongrac P, Kump P, Necemer M, Regvar M. 2006. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environmental Pollution 139: 362371.
  • Weber M, Harada E, Vess C, Roepenack-Lahaye E, Clemens S. 2004. Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotinamine synthase, a zip transporter and other genes as potential metal hyperaccumulation factors. Plant Journal 37: 269281.
  • Wei W, Chai T, Zhang Y, Han L, Xu J, Guan, Z. 2008. The Thlaspi caerulescens NRAMP homologue TcNRAMP3 is capable of divalent cation transport. Molecular Biotechnology. DOI 10.1007/x12033-008-9088-x.
  • Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ. 2003. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant and Soil 66: 19.
  • Zhao H, Eide D. 1996a. The yeast zrt1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proceedings of the National Academy of Sciences, USA 93: 24542458.
  • Zhao H, Eide D. 1996b. The zrt2 gene encodes the low affinity zinc transporter in Saccharomyces cerevisiae. The Journal of Biological Chemistry 271: 2320323210.