SEARCH

SEARCH BY CITATION

References

  • Ainsworth EA, Long SP. 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist 165: 351372.
  • Ainsworth EA, Rogers A. 2007. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant, Cell & Environment 30: 258270.
  • Bazzaz FA, Miao SL, Wayne PM. 1993. CO2-induced growth enhancements of co-occuring tree species decline at different rates. Oecologia 96: 478482.
  • Bernacchi CJ, Calfapietra C, Davey PA, Wittig VE, Scarascia-Mugnozza GE, Raines CA, Long SP. 2003. Photosynthesis and stomatal conductance responses of poplars to free-air CO2 enrichment (PopFACE) during the first growing cycle and immediately following coppice. New Phytologist 159: 609621.
  • Calfapietra C, De Angelis P, Gielen B, Lukac M, Moscatelli MC, Avino G, Lagomarsino A, Polle A, Ceulemans R, Scarascia-Mugnozza GE et al . 2007. Increased nitrogen-use efficiency of a short rotation poplar plantation under elevated CO2 concentration. Tree Physiology 27: 11531163.
  • Calfapietra C, Gielen B, Galema ANJ, Lukac M, De Angelis P, Moscatelli MC, Ceulemans R, Scarascia-Mugnozza GE. 2003a. Free-air CO2 enrichment (FACE) enhances biomass production in a short-rotation poplar plantation (POPFACE). Tree Physiology 23: 805814.
  • Calfapietra C, Gielen B, Sabatti M, De Angelis P, Miglietta F, Scarascia-Mugnozza GE, Ceulemans R. 2003b. Do above ground growth dynamics of poplar change with time under CO2 enrichment? New Phytologist 160: 305318.
  • Calfapietra C, Gielen B, Sabatti M, De Angelis P, Scarascia-Mugnozza GE, Ceulemans R. 2001. Growth performance of Populus exposed to ‘Free Air Carbon dioxide Enrichment’ during the first growing season in the POPFACE experiment. Annals of Forest Science 58: 819828.
  • Calfapietra C, Tulva I, Eensalu E, Perez M, De Angelis P, Scarascia-Mugnozza GE, Kull O. 2005. Canopy profiles of photosynthetic parameters under elevated CO2 and N fertilization in a poplar plantation. Environmental Pollution 137: 525535.
  • Centritto M, Lee HSJ, Jarvis PG. 1999. Increased growth in elevated (CO2): an early, short-term response? Global Change Biology 5: 623633.
  • Ceulemans R, Mousseau M. 1994. Tansley Review No. 71. Effects of elevated atmospheric CO2 on woody plants. New Phytologist 127: 425446.
  • Cotrufo MF, De Angelis P, Polle A. 2005. Leaf litter production and decomposition in a poplar short-rotation coppice exposed to free air CO2 enrichment (POPFACE). Global Change Biology 11: 971982.
  • Davey PA, Olcer H, Zakhleniuk O, Bernacchi CJ, Calfapietra C, Long SP, Raines CA. 2006. Can fast growing plantation trees escape biochemical down-regulation of photosynthesis when grown throughout their complete production cycle in the open air under elevated carbon dioxide? Plant, Cell & Environment 29: 12351244.
  • DeLucia EH, George K, Hamilton JG. 2002. Radiation-use efficiency of a forest exposed to elevated concentrations of atmospheric carbon dioxide. Tree Physiology 22: 10031010.
  • DeLucia EH, Hamilton JG, Naidu SL, Thomas RB, Andrews JA, Finzi A, Lavine M, Matamala R, Mohan JE, Hendrey GR et al . 1999. Net primary production of a forest ecosystem with experimental CO2 enrichment. Science 284: 11771179.
  • DeLucia EH, Moore DJ, Norby RJ. 2005. Contrasting responses of forest ecosystems to rising atmospheric CO2: implications for the global C cycle. Global Biochemical Cycles 19: GB3006, doi:10.1029/2004GB002346.
  • Dickson RE, Lewin KF, Isebrands JG, Coleman MD, Heilman WE, Riemenschneider DE, Sôber J, Host GE, Zak DR, Hendrey GR et al . 2000. Forest atmosphere carbon transfer storage-II (FACTS II) – the aspen free-air CO2 and O3 enrichment (FACE) project: an overview. General Technical Report NC-214. Rhinelander, WI, USA: USDA Forest Service, North Central Research Station.
  • Eriksson E, Gillespie AR, Gustavsson L, Langvall O, Olsson M, Sathre R, Stendahl J. 2007. Integrated carbon analysis of forest management practices and wood substitution. Canadian Journal of Forest Research 37: 671681.
  • Farrar JF. 1996. Sinks, integral parts of a whole plant. Journal of Experimental Botany 47: 12731280.
  • Ferris R, Sabatti M, Miglietta F, Mills R, Taylor G. 2001. Leaf area is stimulated in Populus by free-air CO2 enrichment (POPFACE), through increased cell expansion and production. Plant, Cell & Environment 24: 305316.
  • Finzi A, DeLucia EH, Hamilton JG, Richter DD, Schlesinger WH. 2002. The nitrogen budget of a pine forest under free air CO2 enrichment. Oecologia 132: 567578.
  • Finzi A, Moore DJP, DeLucia EH, Lichter J, Hofmockel KS, Jackson RB, Kim H-S, Matamala R, McCarthy HR, Oren R et al . 2006. Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest. Ecology 87: 1525.
  • Finzi A, Norby RJ, Calfapietra C, Gallet-Budynek A, Gielen B, Holmes WE, Hoosbeek MR, Iversen CM, Jackson RB, Kubiske ME et al . 2007. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proceedings of National Academy of Sciences, USA 104: 1401414019.
  • Garcia MO, Ovasapyan T, Greas M, Treseder KK. 2008. Mycorrhizal dynamics under elevated CO2 and nitrogen fertilization in a warm temperate forest. Plant and Soil 303: 301310.
  • Gielen B, Calfapietra C, Claus A, Sabatti M, Ceulemans R. 2002. Crown architecture of Populus spp. is differentially modified by free-air CO2 enrichment (POPFACE). New Phytologist 153: 91100.
  • Gielen B, Calfapietra C, Lukac M, Wittig VE, De Angelis P, Janssens IA, Moscatelli MC, Grego S, Cotrufo MF, Godbold DL et al . 2005. Net carbon storage in a poplar plantation (POPFACE) after three years of free-air CO2 enrichment. Tree Physiology 25: 13991408.
  • Gielen B, Calfapietra C, Sabatti M, Ceulemans R. 2001. Leaf area dynamics in a closed poplar plantation under free-air carbon dioxide enrichment. Tree Physiology 21: 12451255.
  • Gielen B, Liberloo M, Bogaert J, Calfapietra C, De Angelis P, Miglietta F, Scarascia-Mugnozza GE, Ceulemans R. 2003. Three years of free-air CO2 enrichment (POPFACE) only slightly affect profiles of light and leaf characteristics in closed canopies of Populus. Global Change Biology 9: 10221037.
  • Godbold DL, Hoosbeek MR, Lukac M, Cotrufo MF, Janssens IA, Ceulemans R, Polle A, Velthorst EJ, Scarascia-Mugnozza GE, De Angelis P et al . 2006. Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant and Soil 281: 1524.
  • Van Groenigen K-J, Six J, Hungate BA, De Graaff M-A, Van Breemen N, Van Kessel C. 2006. Element interactions limit soil carbon storage. Proceedings of the National Academy of Sciences, USA 103: 65716574.
  • Gunderson CA, Sholtis JD, Wullschleger SD, Tissue DT, Hanson PJ, Norby RJ. 2002. Environmental and stomatal control of photosynthetic enhancement in the canopy of a sweetgum (Liquidambar styraciflua L.) plantation during 3 years of CO2 enrichment. Plant, Cell & Environment 25: 379393.
  • Hamilton JG, DeLucia EH, George K, Naidu SL, Finzi AC, Schlesinger H. 2002. Forest carbon balance under elevated CO2. Oecologia 131: 250260.
  • Hendrey GR, Miglietta F. 2006. FACE technology: past, present, and future. In: NösbergerJ, LongSP, NorbyRJ, StittM, HendreyGR, BlumH, eds. Ecological studies managed ecosystems and CO2. Berlin, Germany: Springer-Verlag, 457.
  • Herrick JD, Maherali H, Thomas RB. 2004. Reduced stomatal conductance in sweetgum (Liquidambar styraciflua) sustained over long-term CO2 enrichment. New Phytologist 162: 387396.
  • Hinckley TM, Braatne J, Ceulemans R, Clum P, Dunlap J, Newman D, Smit B, Scarascia-Mugnozza GE, Van Volkenburgh E. 1992. 1. Growth dynamics and canopy structure. In: MitchellCP, Ford-RobertsonJB, HinckleyTM, Sennerby-ForsseL, eds. Ecophysiology of short rotation forest crops. New York, NY, USA: Elsevier, 134.
  • Hoosbeek MR, Li Y, Scarascia-Mugnozza GE. 2006a. Free atmospheric CO2 enrichment (FACE) increased labile and total carbon in the mineral soil of a short rotation Poplar plantation. Plant and Soil 281: 247254.
  • Hoosbeek MR, Lukac M, Van Dam D, Godbold DL. 2004. More new carbon in the mineral soil of a poplar plantation under Free Air Carbon Enrichment: cause of increased priming effect? Global Biogeochemical Cycles 18: GB1040, doi:10.1029/2003GB002127.
  • Hoosbeek MR, Scarascia-Mugnozza GE. 2008. Increased litter build up and soil organic matter stabilization in a poplar plantation after six years of atmospheric CO2 enrichment (FACE): Final results of POP-EUROFACE compared to other forest FACE experiments. Ecosystems. doi: 10.1007/s10021-008-9219-z.
  • Hoosbeek MR, Vos JM, Bakker EJ, Scarascia-Mugnozza GE. 2006b. Effects of free atmospheric CO2 enrichment (FACE), N fertilization and poplar genotype on the physical protection of carbon in the mineral soil of a polar plantation after five years. Biogeosciences 3: 479487.
  • Hoosbeek MR, Vos JM, Meinders MBJ, Velthorst EJ, Scarascia-Mugnozza GE. 2007. Free atmospheric CO2 enrichment (FACE) increased respiration and humification in the mineral soil of a Poplar plantation Geoderma 138: 204212.
  • Hovenden MJ. 2003. Photosynthesis of coppicing poplar clones in a free-air CO2 enrichment (FACE) experiment in a short-rotation forest. Functional Plant Biology 30: 391400.
  • Hymus GJ, Johnson DW, Dore S, Anderson HP, Hinkle CR, Drake BG. 2003. Effects of elevated atmopheric CO2 on net ecosystem CO2 exchange of a scrub-oak ecosystem. Global Change Biology 9: 18021812.
  • Hyvönen R, Agren G, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG et al . 2007. The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystem: a literature review. New Phytologist 173: 463480.
  • IPCC. 2001. Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.
  • Isebrands JG, McDonald EP, Kruger E, Hendrey G, Percy K, Pregitzer K, Sober J, Karnosky DF. 2001. Growth responses of Populus tremuloides clones to interacting elevated carbon dioxide and tropospheric ozone. Environmental Pollution 115: 359371.
  • Iversen CM, Ledford J, Norby RJ. 2008. CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest. New Phytologist 179: 837847.
  • Jarvis PG, Jarvis MS. 1964. Growth rates of woody plants. Physiologia Plantarum 17: 654666.
  • Jastrow JD, Miller RM, Matamala R, Norby RJ, Boutton TW, Rice CW, Owensby CE. 2005. Elevated atmospheric carbon dioxide increase soil carbon. Global Change Biology 11: 20572064.
  • Johnson DW, Curtis PS. 2001. Effects of forest management on soil C and N storage: meta-analysis. Forest Ecology and Management 140: 227238.
  • Karnosky DF, Zak DR, Pregitzer KS, Awmack CS, Bockheim JG, Dickson RE, Hendrey GR, Host GE, King JS, Kopper BJ et al . 2003. Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2: a synthesis of molecular to ecosystem results from the Aspen FACE project. Functional Ecology 17: 289304.
  • King JS, Hanson PJ, Bernhardt E, De Angelis P, Norby RJ, Pregitzer KS. 2004. A multiyear synthesis of soil respiration responses to elevated atmospheric CO2 from four forest FACE experiments. Global Change Biology 10: 10271042.
  • King JS, Pregitzer KS, Zak DR, Sober J, Isebrands JG, Dickson RE, Hendrey GR, Karnosky DF. 2001. Fine-root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO2 and tropospheric O3. Oecologia 128: 237250.
  • Kinney KK, Lindroth RL. 1997. Responses of three deciduous tree species to atmospheric CO2 and soil inline image availability. Canadian Journal of Forest Research 27: 110.
  • Kubiske ME, Pregitzer KS, Zak DR, Mikan CJ. 1998. Growth and C allocation of Populus tremuloides genotypes in response to atmospheric CO2 and soil N availability. New Phytologist 140: 251260.
  • Lagomarsino A, Moscatelli MC, Hoosbeek MR, De Angelis P, Grego S. 2008. Assessment of soil nitrogen and phosphorous availability under elevated CO2 and N-fertilization in a short rotation poplar plantation. Plant and Soil 308: 131147.
  • Liberloo M, Calfapietra C, Lukac M, Godbold DL, Luo ZB, Polle A, Hoosbeek MR, Kull O, Marek M, Raines C et al . 2006. Woody biomass production during the second rotation of a bio-energy Populus plantation increases in a future high CO2 world. Global Change Biology 12: 10941106.
  • Liberloo M, Dillen SY, Calfapietra C, Marinari S, Luo ZB, De Angelis P, Ceulemans R. 2005. Elevated CO2 concentration, fertilization and their interaction: growth stimulation in a short-rotation poplar coppice (EUROFACE). Tree Physiology 25: 179189.
  • Liberloo M, Gielen B, Calfapietra C, Veys C, Pigliacelli R, Scarascia-Mugnozza GE, Ceulemans R. 2004. Growth of a poplar short rotation coppice under elevated atmospheric CO2 concentrations (EUROFACE) depends on fertilization and species. Annals of Forest Science 61: 299307.
  • Liberloo M, Tulva I, Raïm O, Kull O, Ceulemans R. 2007. Photosynthetic stimulation under long-term CO2 enrichment and fertilization is sustained across a closed Populus canopy profile (EUROFACE). New Phytologist 173: 537549.
  • Long SP, Ainsworth EA, Rogers A, Ort DR. 2004. Rising atmospheric carbon dioxide: plants FACE the future. Annual Review of Plant Biology 55: 591628.
  • Long SP, Drake BG. 1992. Photosynthetic CO2 assimilation and rising atmospheric CO2 concentrations. In: BakerNR, ThomasH, eds. Topics in photosynthesis. Amsterdam, the Netherlands: Elsevier, 69103.
  • Lukac M, Calfapietra C, Godbold DL. 2003. Production, turnover and mycorrhizal colonisation of root systems of three Populus species grown under elevated CO2 (POPFACE). Global Change Biology 9: 838848.
  • Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ et al . 2004. Progressive nitrogen limitation of ecosytem responses to rising atmospheric CO2 concentration. BioScience 54: 731739.
  • Luo ZB, Calfapietra C, Liberloo M, Scarascia-Mugnozza GE, Polle A. 2006. Carbon partitioning to mobile and structural fractions in poplar wood under elevated CO2 (EUROFACE) and N-fertilization. Global Change Biology 12: 272283.
  • Luo ZB, Langenfeld-Heyser R, Calfapietra C, Polle A. 2005. Influence of Free air CO2 enrichment (EUROFACE) and nitrogen fertilisation on the anatomy of juvenile wood of three poplar species after coppicing. Trees 19: 109118.
  • Marinari S, Calfapietra C, De Angelis P, Scarascia-Mugnozza GE, Grego S. 2006. Impact of elevated CO2 and nitrogen fertilization on foliar elemental composition in a short rotation poplar plantation. Environmental Pollution 147: 507515.
  • McCarthy HR, Oren R, Finzi A, Johnsen KH. 2006. Canopy leaf area constrains [CO2]-induced enhancement of productivity and partitioning among aboveground carbon pools. Proceedings of the National Academy of Sciences, USA 103: 1935619361.
  • McDonald EP, Kruger EL, Riemenschneider DE, Isebrands JG. 2002. Competitive status influences tree-growth responses to elevated CO2 and O3 in aggrading aspen stands. Functional Ecology 16: 792801.
  • Medlyn BE, Barton CVM, Broadmeadow MSJ, Ceulemans R, De Angelis P, Forstreuter M, Freeman M, Jackson SB, Kellomäki S, Laitat E et al . 2001. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytologist 149: 247264.
  • Medlyn BE, Berbigier P, Clement R, Grelle A, Loustau D, Linder S, Wingate L, Jarvis PG, Sigurdsson BD, McMurtrie RE. 2005. The carbon balance of coniferous forests growing in contrasting climatic conditions: a model-based analysis. Agricultural and Forest Meteorology 131: 97124.
  • Melillo JM, McGuire DA, Kicklighter DW, Moore BD, Vorosmarty CJ, Schloss AL. 1993. Global climate change and terrestrial net primary production. Nature 363: 234240.
  • Miglietta F, Magliulo V, Bindi M, Cerio L, Vaccari FP, Loduca V, Peresotti A. 1998. Free Air CO2 Enrichment of potato (Solanum tuberosum L.): development, growth and yield. Global Change Biology 4: 163172.
  • Miglietta F, Peressotti A, Vaccari FP, Zaldei A, De Angelis P, Scarascia-Mugnozza GE. 2001. Free-air CO2 enrichment (FACE) of a poplar plantation: the POPFACE fumigation system. New Phytologist 150: 465476.
  • Mitchell CP, Stevens EA, Watters MP. 1999. Short-rotation forestry-operations, productivity and costs based on experience gained in the UK. Forest Ecology and Management 121: 123136.
  • Moore BD, Cheng SH, Rice J, Seemann JR. 1998. Sucrose cycling, rubisco expression, and prediction of photosynthetic acclimation to elevated atmospheric CO2. Plant, Cell & Environment 21: 905915.
  • Moore BD, Cheng SH, Sims D, Seemann JR. 1999. The biochemical and molecular basis for photosynthetic acclimation tot elevated atmospheric CO2. Plant, Cell & Environment 22: 567582.
  • Moore DJP, Aref S, Ho RM, Pippen JS, Hamilton JG, DeLucia EH. 2006. Annual basal area increment and growth duration of Pinus taeda in response to eight years of free-air carbon dioxide enrichment. Global Change Biology 12: 13671377.
  • Moscatelli MC, Lagomarsino A, De Angelis P, Grego S. 2005a. Seasonality of soil biological properties in a poplar plantation growing under elevated atmospheric CO2. Applied Soil Ecology 30: 162173.
  • Moscatelli MC, Lagomarsino A, Marinari S, De Angelis P, Grego S. 2005b. Soil microbial indices as bioindicators of environmental changes in a poplar plantation. Ecological Indicators 5: 171179.
  • Nohrstedt HO, Arnebrant K, Baath E, Söderström B. 1989. Changes in carbon content, respiration rate, ATP content, and microbial biomass in nitrogen-fertilized pine forest soils in Sweden. Canadian Journal of Forest Research 19: 323328.
  • Norby RJ. 1998. Nitrogen deposition: a component of global change analyses. New Phytologist 139: 189200.
  • Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R et al . 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences, USA 102: 1805218056.
  • Norby RJ, Hanson PJ, O’Neill EG, Tschaplinski TJ, Weltzin JF, Hansen RA, Cheng W, Wullschleger SD, Gunderson CA, Edwards NT et al . 2002. Net primary productivity of a CO2-enriched deciduous forest and the implications for carbon storage. Ecological Applications 12: 12611266.
  • Norby RJ, Iversen CM. 2006. Nitrogen uptake, distribution, turnover, and efficiency of use in a CO2-enriched sweetgum forest. Ecology 87: 514.
  • Norby RJ, Ledford J, Reilly CD, Miller NE, O’Neill EG. 2004. Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proceedings of the National Academy of Sciences, USA 101: 96899693.
  • Norby RJ, Sholtis JD, Gunderson CA, Jawdy SS. 2003. Leaf dynamics of a deciduous forest canopy: no reponse to elevated CO2. Oecologia 136: 574584.
  • Norby RJ, Todd DE, Fults J, Johnson DW. 2001. Allometric determination of tree growth in a CO2-enriched sweetgum stand. New Phytologist 150: 477487.
  • Norby RJ, Wullschleger SD, Gunderson CA, Nietch CT. 1995. Increased growth efficiency of Quercus alba trees in a CO2-enriched atmosphere. New Phytologist 131: 9197.
  • Parrent JL, Vilgalys R. 2007. Biomass and compositional responses of ectomycorrhizal fungal hyphae to elevated CO2 and nitrogen fertilization. New Phytologist 176: 164174.
  • Poorter H, Roumet C, Campbell BD. 1996. Interspecific variation in the growth response of plants to elevated CO2: a search for functional types. In: KörnerC, BazzazFA, eds. Carbon dioxide, populations, and communities. London, UK: Academic Press Inc., 375412.
  • Pritchard SG, Strand AE, McCormack ML, Davis MA, Finzi AC, Jackson RB, Matamala R, Rogers HH, Oren R. 2008. Fine root dynamics in a loblolly pine forest are influenced by free air CO2 enrichment: a six-year-minirhizotron study. Global Change Biology 14: 588602.
  • Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S, Trost J. 2006. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440: 922925.
  • Rogers A, Ellsworth DS. 2002. Photosynthetic acclimation of Pinus taeda (loblolly pine) to long-term growth in elevated pCO2 (FACE). Plant, Cell & Environment 25: 851858.
  • Rogers A, Fischer BU, Bryant J, Frehner M, Blum H, Raines CA, Long SP. 1998. Acclimation of photosynthesis to elevated CO2 under low-nitrogen nutrition is affected by the capacity for assimilate utilization. Perennial ryegrass under Free-Air CO2 enrichment. Plant Physiology 118: 683689.
  • Scarascia-Mugnozza GE, Calfapietra C, Ceulemans R, Gielen B, Cotrufo MF, De Angelis P, Godbold DL, Hoosbeek M, Kull O, Lukac M et al . 2006. Responses to elevated [CO2] of a short rotation, multispecies poplar plantation: the POPFACE/EUROFACE experiment. In: NösbergerJ, LongSP, NorbyRJ, StittM, HendreyGR, BlumH, eds. Managed ecosystems and CO2. Case studies, processes and perspectives. Berlin, Germany: Springer-Verlag, 449.
  • Schlesinger WH, Lichter J. 2001. Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature 411: 466469.
  • Sennerby-Forsse L. 1995. Growth processes. Biomass and Bioenergy 9: 3543.
  • Sholtis JD, Gunderson CA, Norby RJ, Tissues DT. 2004. Persistent stimulation of photosynthesis by elevated CO2 in a sweetgum (Liquidambar styraciflua) forest stand. New Phytologist 162: 243354.
  • Sigurdsson BD. 2001. Elevated [CO2] and nutrient status modified leaf phenology and growth rythm of young Populus trichocarpa trees in a 3-year field study. Trees 15: 403413.
  • Six J, Callewaert P, Lenders S, De Gryze S, Morris SJ, Gregorich EG, Paul EA, Paustian K. 2002. Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Science Society of America Journal 66: 19811987.
  • Steinmann K, Siegwolf RTW, Saurer M, Körner C. 2004. Carbon fluxes to the soil in a mature temperate forest assessed by 13C isotope tracing. Oecologia 141: 489501.
  • Stitt M. 1991. Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant, Cell & Environment 14: 741762.
  • Tamm CO. 1991. Nitrogen in terrestrial ecosystems, questions of productivity, vegetational changes and ecosystem stability. Berlin, Germany: Springer-Verlag.
  • Taylor G, Street NR, Tricker PJ, Sjödin A, Graham L, Skogström O, Calfapietra C, Scarascia-Mugnozza GE, Jansson S. 2005. The transcriptome of Populus in elevated CO2. New Phytologist 167: 143154.
  • Taylor G, Tallis MJ, Giardina CP, Percey KE, Miglietta F, Gupta PS, Gioli B, Calfapietra C, Gielen B, Kubiske ME et al . 2007. Future atmospheric CO2 leads to delayed autumnal senescence and increased carbon gain in Populus. Global Change Biology 14: 112.
  • Taylor G, Tricker PJ, Zhang FZ, Alston VJ, Miglietta F, Kuzminsky E. 2003. Spatial and temporal effects of Free-Air CO2 enrichment (POPFACE) on leaf growth, Cell expansion, and cell production in a closed canopy of poplar. Plant Physiology 131: 177185.
  • Treseder KK. 2004. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytologist 164: 347355.
  • Tricker PJ, Calfapietra C, Kuzminsky E, Puleggi R, Ferris R, Nathoo M, Pleasants LJ, Alston V, De Angelis P, Taylor G. 2004. Long-term acclimation of leaf production, development, longevity and quality following 3 yr exposure to free-air CO2 enrichment during canopy closure in Populus. New Phytologist 162: 413426.
  • Tricker PJ, Peccgiari M, Bunn SM, Vaccari FP, Peresotti A, Miglietta F, Taylor G. (in press). Water use of a bioenergy plantation increases in a future high CO2 world. Biomass and Bioenergy..
  • Tricker PJ, Trewin H, Kull O, Clarkson GJJ, Eensalu E, Tallis MJ, Colella A, Doncaster PC, Sabatti M, Taylor G. 2005. Stomatal conductance and not stomatal density determines the long-term reduction in leaf transpiration of poplar in elevated CO2. Oecologia 143: 652660.
  • Wall GW, Brooks TJ, Adam NR, Cousins AB, Kimball BA, Pinter PJ Jr, LaMorte RL, Triggs J, Ottman MJ, Leavitt SW et al . 2001. Elevated atmospheric CO2 improved Sorghum plant water status by ameliorating the adverse effects of drought. New Phytologist 152: 231248.
  • Waring RH, Schlesinger WH. 1985. Forest Ecosystems: concepts and management. Orlando, FL, USA: Academic Press.
  • Wittig VE, Bernacchi CJ, Zhu X-G, Calfapietra C, Ceulemans R, De Angelis P, Gielen B, Miglietta F, Morgan PB, Long SP. 2005. Gross primary production is still stimulated for three Populus species grown under free-air CO2 enrichment from planting through canopy closure. Global Change Biology 11: 644656.
  • Wullschleger SD, Gundnerson CA, Hanson PJ, Wilson KB, Norby RJ. 2002. Sensitivity of stomatal and canopy conductance to elevated CO2 concentration – interacting variables and perspectives of scale. New Phytologist 153: 485496.
  • Wullschleger SD, Norby RJ, Gunderson CA. 1997. Forest trees and their response to atmospheric CO2 enrichment: A compilation of results. In: AllenLHJ, KirkhamMB, OlszykDM, WilliamsCE, eds. Advances in carbon dioxide effects research. ASA Special Publication No. 61. Madison, WI, USA: American Society of Agronomy, 79100.
  • Yanai RD, Currie WS, Goodale CL. 2003. Soil carbon dynamics after forest harvest: an ecosystem paradigm reconsidered. Ecosystems 6: 197212.