SEARCH

SEARCH BY CITATION

References

  • Abrahamson WG, McCrea KD. 1986. Nutrient and biomass allocation in Solidago altissima: effects of two stem gallmakers, fertilization, and ramet isolation. Oecologia 68: 174180.
  • Abrahamson WG, Weis AE. 1997. Evolutionary ecology across three trophic levels: goldenrods, gallmakers, and natural enemies. Princeton, NJ, USA: Princeton University Press.
  • Agrawal AA. 2000. Mechanisms, ecological consequences and agricultural implications of tri-trophic interactions. Current Opinion in Plant Biology 3: 329335.
  • Alonso C, Herrera CM. 1996. Variation in herbivory within and among plants of Daphne laureola (Thymelaeaceae): correlation with plant size and architecture. Journal of Ecology 84: 495502.
  • Araújo APA, De Paula JDA, Carneiro MAA, Schoereder JH. 2006. Effects of host plant architecture on colonization by galling insects. Austral Ecology 31: 343348.
  • BarkleyTM, BrouilletL, JeudeH, StrotherJL, GandhiK, KigerRW, YatskievychK, ZarucchiJL, eds. 2006. Flora of North America north of Mexico, Vol. 20. New York, NY, USA: Oxford University Press.
  • Chang GC, Neufeld J, Eigenbrode SD. 2006. Leaf surface wax and plant morphology of peas influence insect density. Entomologia Experimentalis et Applicata 119: 197205.
  • Fontes EMG, Habeck DH, Slansky F Jr. 1994. Phytophagous insects associated with goldenrods (Solidago spp.) in Gainsville, Florida. Florida Entomologist 77: 209221.
  • Fraenkel GS. 1959. The raison d’être of secondary plant substances. Science 129: 14661470.
  • Gagné RJ. 1989. The plant-feeding gall midges of North America. Ithaca, NY, USA: Cornell University Press.
  • Grubb PJ, Jackson RV. 2007. The adaptive value of young leaves being tightly folded or rolled on monocotyledons in tropical lowland rain forest: an hypothesis in two parts. Plant Ecology 192: 317327.
  • Harborne JB 1997. Plant secondary metabolism. In: CrawleyMJ, ed. Plant ecology. Oxford, UK: Blackwell Science, 132155.
  • Hartmann T. 1996. Diversity and variability of plant secondary metabolism: a mechanistic view. Entomologia Experimentalis et Applicata 80: 177188.
  • Hartnett DC, Abrahamson WG. 1979. The effects of stem gall insects on life history patterns in Solidago canadensis. Ecology 60: 910917.
  • Kaitaniemi P, Vehviläinen H, Ruohomäki K. 2004. Movement and disappearance of mountain birch defoliators are influenced by the interactive effects of plant architecture and induced resistance. Ecological Entomology 29: 437446.
  • Kareiva P, Sahakian R. 1990. Tritrophic effects of a simple architectural mutation in pea plants. Nature 345: 433434.
  • Leiby RW. 1922. Biology of the goldenrod gall-maker Gnorimoschema gallaesolidaginis Riley. Journal of the New York Entomological Society 30: 8194.
  • Maddox GD, Root RB. 1987. Resistance to 16 diverse species of herbivorous insects within a population of goldenrod, Solidago altissima: genetic variation and heritability. Oecologia 72: 814.
  • Marquis RJ, Lill JT, Piccinni A. 2002. Effect of plant architecture on colonization and damage by leaftying caterpillars of Quercus alba. Oikos 99: 531537.
  • McCrea KD, Abrahamson WG. 1985. Evolutionary impacts of the goldenrod ball gallmaker on Solidago altissima clones. Oecologia 68: 2022.
  • Norris DM, Kogan M. 1980. Biochemical and morphological bases of resistance. In: MaxwellFG, JenningsPR, eds. Breeding plants resistant to insects. New York, NY, USA: John Wiley & Sons, 2361.
  • Oghiakhe S, Jackai LEN, Makanjuola WA. 1992. Cowpea plant architecture in relation to infestation and damage by the legume pod borer, Maruca testulalis Geyer (Lepidoptera: Pyralidae) – 2. Effect of pod angle. Insect Science and its Application 13: 339344.
  • Pichersky E, Gang DR. 2000. Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends in Plant Science 5: 439445.
  • Root RB, Cappuccino N. 1992. Patterns in population change and the organization of the insect community associated with goldenrod. Ecological Monographs 62: 393420.
  • Rudgers JA, Whitney KD. 2006. Interactions between insect herbivores and a plant architectural dimorphism. Journal of Ecology 94: 12491260.
  • Stinner BR, Abrahamson WG. 1979. Energetics of the Solidago canadensis–stem gall insect–parasitoid guild interaction. Ecology 60: 918926.
  • Stireman JO III, Janson EM, Carr TG, Devlin H, Abbot P. 2008. Evolutionary radiation of Asteromyia carbonifera (Diptera: Cecidomyiidae) gall morphotypes on the goldenrod Solidago altissima (Asteraceae). Biological Journal of the Linnean Society 95: 840858.
  • Walck JL, Baskin JM, Baskin CC. 1999. Relative competitive abilities and growth characteristics of a narrowly endemic and a geographically widespread Solidago species (Asteraceae). American Journal of Botany 86: 820828.
  • Weber E. 2001. Current and potential ranges of three exotic goldenrods (Solidago) in Europe. Conservation Biology 15: 122128.
  • Wise MJ, Abrahamson WG. 2008. Ducking as a means of resistance to herbivory in tall goldenrod, Solidago altissima. Ecology 89: 32753281.
  • Wise MJ, Abrahamson WG, Landis K. 2006a. Edaphic environment, gall midges, and goldenrod clonal expansion in a mid-successional old-field. Acta Oecologica 30: 365373.
  • Wise MJ, Kieffer DL, Abrahamson WG. 2006b. Costs and benefits of gregarious feeding in the meadow spittlebug, Philaenus spumarius. Ecological Entomology 31: 548555.
  • Wise MJ, Yi CG, Abrahamson WG. 2009. Associational resistance, gall-fly preferences, and a stem dimorphism in Solidago altissima. Acta Oecologica 35: 471476.