Nitrogen metabolism in the developing ear of maize (Zea mays): analysis of two lines contrasting in their mode of nitrogen management

Authors

  • Rafael A. Cañas,

    1. Unité de Nutrition Azotée des Plantes, Unité de Recherche 511, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Route de Saint-Cyr, F-78026 Versailles Cedex, France
    Search for more papers by this author
  • Isabelle Quilleré,

    1. Unité de Nutrition Azotée des Plantes, Unité de Recherche 511, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Route de Saint-Cyr, F-78026 Versailles Cedex, France
    Search for more papers by this author
  • Aurélie Christ,

    1. Unité de Nutrition Azotée des Plantes, Unité de Recherche 511, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Route de Saint-Cyr, F-78026 Versailles Cedex, France
    Search for more papers by this author
  • Bertrand Hirel

    1. Unité de Nutrition Azotée des Plantes, Unité de Recherche 511, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Route de Saint-Cyr, F-78026 Versailles Cedex, France
    Search for more papers by this author

Author for correspondence:
Bertrand Hirel
Tel: +33 130833089
Email: hirel@versailles.inra.fr

Summary

  • The main steps of nitrogen (N) metabolism were characterized in the developing ear of the two maize (Zea mays) lines F2 and Io, which were previously used to investigate the genetic basis of nitrogen use efficiency (NUE) in relation to yield.
  • During the grain-filling period, we monitored changes in metabolite content, enzyme activities and steady-state levels of transcripts for marker genes of amino acid synthesis and interconversion in the cob and the kernels.
  • Under low N fertilization conditions, line Io accumulated glutamine, asparagine and alanine preferentially in the developing kernels, whereas in line F2, glutamine and proline were the predominant amino acids. Quantification of the mRNA-encoding enzymes involved in asparagine, alanine and proline biosynthesis confirmed that the differences observed between the two lines at the physiological level are likely to be attributable to enhanced expression of the cognate genes.
  • Integrative analysis of physiological and gene expression data indicated that the developing ear of line Io had higher N use and transport capacities than line F2. Thus, in maize there is genetic and environmental control of N metabolism not only in vegetative source organs but also in reproductive sink organs.

Ancillary