SEARCH

SEARCH BY CITATION

References

  • Ahmed FRS, Killham K, Alexander I. 2006. Influences of arbuscular mycorrhizal fungus Glomus mosseae on growth and nutrition of lentil irrigated with arsenic contaminated water. Plant and Soil 258: 3341.
  • Anderson MJ. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 3246.
  • Anderson MJ. 2005. PERMANOVA: a FORTRAN computer program for permutational multivariate analysis of variance. Auckland, New Zealand: Department of Statistics, University of Auckland.
  • Asher CJ, Reay PF. 1979. Arsenic uptake by barley seedlings. Australian Journal of Plant Physiology 6: 459466.
  • Burleigh SH. 2001. Relative quantitative RT-PCR to study the expression of plant nutrient transporters in arbuscular mycorrhizas. Plant Science 160: 899904.
  • Burleigh SH, Harrison MJ. 1999. The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots. Plant Physiology 119: 241248.
  • Burton RA, Shirley NJ, King BJ, Harvey AJ, Fincher GB. 2004. The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiology 134: 224236.
  • Catarecha P, Segura MD, Franco-Zorrilla JM, García-Ponce B, Lanza M, Solano R, Paz-Ares J, Leyva A. 2007. A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. Plant Cell 19: 11231133.
  • Cavagnaro TR, Smith FA, Lorimer MF, Haskard KA, Ayling SM, Smith SE. 2001. Quantitative development of Paris-type arbuscular mycorrhizas formed between Asphodelus fistulosus and Glomus coronatum. New Phytologist 149: 105113.
  • Chen BD, Zhu YG, Smith FA. 2006. Effects of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil. Chemosphere 62: 14641473.
  • Chen BD, Xiao X, Zhu YG, Smith FA, Xie ZM, Smith SE. 2007. The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Science of the Total Environment 379: 226234.
  • Christophersen HM, Smith SE, Pope S, Smith FA. 2009. No evidence for competition between arsenate and phosphate for uptake from soil by medic or barley. Environment International 35: 485490.
  • Covey RP, Koch BL, Larsen HJ. 1981. Influence of vesicular arbuscular mycorrhizae on the growth of apple and corn in low-phosphorus soil. Phytopathology 71: 712715.
  • Dong Y, Zhu YG, Smith FA, Wang Y, Chen BD. 2008. Arbuscular mycorrhiza enhance arsenic resistance of both white clover (Trifolium repens, Linn) and ryegrass (Lolium perenne L.) plants in an arsenic-containing soil. Environmental Pollution 155: 174181.
  • Drew EA, Murray RS, Smith SE. 2006. Functional diversity of external hyphae of AM fungi: ability to colonise new hosts is influenced by fungal species, distance and soil conditions. Applied Soil Ecology 32: 350365.
  • Ezawa T, Smith SE, Smith FA. 2002. P metabolism and transport in AM fungi. Plant and Soil 244: 221230.
  • Glassop D, Smith SE, Smith FW. 2005. Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Planta 222: 688698.
  • Gonzalez-Chavez C, Harris PJ, Dodd J, Meharg AA. 2002. Arbuscular mycorrhizal fungi confer enhanced arsenate resistance on Holcus lanatus. New Phytologist 155: 163171.
  • Grace EJ, Smith FA, Smith SE. 2009a. Deciphering the arbuscular mycorrhizal pathway of P uptake in non-responsive hosts. In: Azcón-AguilarC, BareaJM, GianinazziS, Gianinazzi-PearsonV, eds. Mycorrhizas: functional processes and ecological impact. Springer-Verlag, Berlin Heidelberg, 89106.
  • Grace EJ, Cotsaftis O, Tester M, Smith FA, Smith SE. 2009b. Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonisation, fungal P uptake or effects on expression of plant phosphate transporter genes. New Phytologist 181: 938949.
  • Graham JH, Abbott LK. 2000. Wheat responses to aggressive and non-aggressive arbuscular mycorrhizal fungi. Plant and Soil 220: 207218.
  • Harrison MJ, van Buuren ML. 1995. A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378: 626632.
  • Harrison MJ, Dewbre GR, Liu JY. 2002. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14: 24132429.
  • Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. 2007. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biology 8: R19.
  • Isayenkov S, Fester T, Hause B. 2004. Rapid determination of fungal colonisation and arbuscule formation in roots of Medicago truncatula using real-time (RT) PCR. Journal of Plant Physiology 161: 13791383.
  • Johnson NC, Graham JH, Smith FA. 1997. Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytologist 135: 575586.
  • Knudson JA, Meikle T, DeLuca TH. 2003. Role of mycorrhizal fungi and phosphorus in the arsenic tolerance of basin wildrye. Journal of Environmental Quality 32: 20012006.
  • Kouno K, Tuchiya Y, Ando T. 1995. Measurement of soil microbial biomass phosphorus by an anion exchange membrane method. Soil Biology and Biochemistry 27: 13531357.
  • Lambert DH, Baker DE, Cole H Jr. 1979. The role of mycorrhizae in the interactions of phosphorus with zinc, copper, and other elements. Soil Science Society of America, Journal 43: 976980.
  • Leonard A, Lauwerys RR. 1980. Carcinogenicity, teratogenicity and mutagenicity of arsenic. Mutation Research 75: 4962.
  • Li HY, Smith SE, Holloway R, Zhu YG, Smith FA. 2006. Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phophorus-fixing soil even in the absence of positive growth response. New Phytologist 172: 536543.
  • Li HY, Smith FA, Dickson S, Holloway RE, Smith SE. 2008. Plant growth depressions in arbuscular mycorrhizal symbioses: not just caused by carbon drain? New Phytologist 178: 852862.
  • Liu H, Trieu AT, Blaylock LA, Harrison MJ. 1998. Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and response to colonization by arbuscular mycorrhizal (AM) fungi. Molecular Plant–Microbe Interactions 11: 1422.
  • Liu Y, Zhu YG, Chen BD, Christie P, Li XL. 2005. Yield and arsenate uptake of arbuscular mycorrhizal tomato colonized by Glomus mosseae BEG167 in As spiked soil under glasshouse conditions. Environment International 31: 867873.
  • Maldonado-Mendoza IE, Dewbre GR, van Buuren ML, Versaw W, Harrison MJ. 2002. Methods to estimate the proportion of plant and fungal RNA in an arbuscular mycorrhizal fungus. Mycorrhiza 12: 6774.
  • Marin A, Masscheleyn P, Patrick W Jr. 1992. The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant and Soil 139: 175183.
  • Marin A, Masscheleyn P, Patrick W Jr. 1993. Soil redox-pH stability of arsenic species and its influence on arsenic uptake in rice. Plant and Soil 152: 245253.
  • Masscheleyn P, Delaune R, Patrick W Jr. 1991. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environmental Sciences & Technology 25: 14141419.
  • McArdle BH, Anderson MJ. 2001. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82: 290297.
  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA. 1990. A new method which gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal fungi. New Phytologist 115: 495501.
  • Meharg AA. 1994. Integrated tolerance mechanisms: constitutive and adaptive plant responses to elevated metal concentrations in the environment. Plant, Cell & Environment 17: 989993.
  • Meharg AA. 2004. Arsenic in rice – understanding a new disaster for South-East Asia. Trends in Plant Science 9: 415417.
  • Meharg AA, MacNair MR. 1991. Uptake, accumulation and translocation of arsenate in arsenate-tolerant and non-tolerant Holcus lanatus L. New Phytologist 117: 225231.
  • Meharg AA, MacNair MR. 1992. Supression of the high-affinity phosphate-uptake system: A mechanism of arsenate tolerance in Holcus lanatus L. Journal of Experimental Botany 43: 519524.
  • Meharg A, Bailey J, Breadmore K, MacNair MR. 1994. Biomass allocation, phosphorus nutrition and vesicular–arbuscular mycorrhizal infection in clones of Yorkshire fog, Holcus lanatus L. (Poaceae) that differ in their phosphate uptake kinetics and tolerance to arsenate. Plant and Soil 160: 1120.
  • Murphy PJ, Langridge P, Smith SE. 1997. Cloning plant genes differentially expressed during colonization of roots of Hordeum vulgare by the vesicular–arbuscular mycorrhizal fungus Glomus intraradices. New Phytologist 135: 291301.
  • Ng JC, Wang J, Shraim A. 2003. A global health problem caused by arsenic from natural sources. Chemosphere 52: 13531359.
  • Olsen SR, Cole CV, Watanabe FS, Dean LA. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular No. 939. US Government, Washington DC, USA.
  • Paszkowski U, Kroken S, Roux C, Briggs SP. 2002. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences, USA 99: 1332413329.
  • Pope S, Smith SE, Christophersen HM, Smith FA. 2007. Arsenic uptake by Medicago truncatula: P supply and arbuscular mycorrhizal (AM) colonization do not reduce specific uptake from soil. In: ZhuYG, LeppN, NaiduR, eds. Biogeochemistry of trace elements: environmental protection, remediation and human health. Beijing, China: Tsinghua University Press, 863864.
  • Rae AL, Cybinski DH, Jarmey JM, Smith FW. 2003. Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties among members of the Pht1 family. Plant Molecular Biology 53: 2736.
  • Rausch C, Daram P, Brunner S, Jansa J, Lalol M, Leggewie G, Amrhein N, Bucher M. 2001. A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414: 462466.
  • SAS Institute Inc. 19982000. JMPin, version 4.0.3. Cary, NC, USA: SAS Institute Inc.
  • Schünmann PD, Richardson AD, Vickers CE, Delhaize E. 2004a. Promoter analysis of the barley Pht1;1 phosphate transporter gene identifies regions controlling root expression and responsiveness to phosphate deprivation. Plant Physiology 136: 42054214.
  • Schünmann PD, Richardson AD, Smith FW, Delhaize E. 2004b. Characterization of promoter expression patterns derived from the Pht1 phosphate transporter genes of barley (Hordeum vulgare L.). Journal of Experimental Botany 55: 855865.
  • Sharples JM, Meharg AA, Chambers SM, Cairney JWG. 2000. Mechanism of arsenate resistance in the Ericoid mycorrhizal fungus Hymenoscyphus ericae. Plant Physiology 124: 13271334.
  • Shin H, Shin HS, Dewbre GR, Harrison MJ. 2004. Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant Journal 39: 629642.
  • Simon L, Lalonde M, Bruns TD. 1992. Specific amplification of 18S fungal ribosomal genes from vesicular–arbuscular endomycorrhizal fungi colonizing roots. Applied and Environmental Microbiology 58: 291295.
  • Smith SE, Read DJ. 2008. Mycorrhizal symbiosis. London, UK: Elsevier.
  • Smith FW, Cybinski DH, Rae AL. 1999. Regulations of expression of genes encoding phosphate transporters in barley roots. In: Gissel-NielsenG, JensenA, eds. Plant nutrition – molecular biology and genetics. Dordrecht, The Netherlands: Kluwer Academic Publishers, 145150.
  • Smith FW, Mudge SR, Rae AL, Glassop D. 2003. Phosphate transport in plants. Plant and Soil 248: 7183.
  • Smith SE, Smith FA, Jakobsen I. 2004. Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytologist 162: 511524.
  • Smith FA, Grace EJ, Smith SE. 2009. More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytologist 182: 347358.
  • Ultra VU, Tanaka S, Sakurai K, Iwasaki K. 2007a. Arbuscular mycorrhizal fungus (Glomus aggregatum) influences biotransformation of arsenic in the rhizosphere of sunflower (Helianthus annuus L.). Soil Science and Plant Nutrition 53: 499508.
  • Ultra VU, Tanaka S, Sakurai K, Iwasaki K. 2007b. Effects of arbuscular mycorrhiza and phosphorus application on arsenic toxicity in sunflower (Helianthus annuus L.) and on the transformation of arsenic in the rhizosphere. Plant and Soil 290: 2429.
  • Vierheilig H, Coughlan AP, Wyss U, Piché Y. 1998. Ink and vinegar, a simple staining technique for arbuscular–mycorrhizal fungi. Applied and Environmental Microbiology 64: 50045007.
  • Xia YS, Chen BD, Christie P, Smith FA, Wang YS, Li XL. 2007. Arsenic uptake by arbuscular mycorrhizal maize (Zea mays L.) grown in an arsenic-contaminated soil with added phosphorus. Journal of Environmental Sciences 19: 12451251.
  • Xu P, Christie P, Liu Y, Zhang J, Li X. 2008. The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake. Environmental Pollution 156: 215220.
  • Zhao FJ, Ma JF, Meharg MM, McGrath SP. 2009. Arsenic uptake and metabolism in plants. New Phytologist 181: 777794.
  • Zhu L, Altmann SW. 2005. mRNA and 18S-RNA coapplication-reverse transcription for quantitative gene expression analysis. Analytical Biochemistry 345: 102109.
  • Zhu YG, Smith FA, Smith SE. 2003. Phosphorus efficiencies and responses of barley (Hordeum vulgare L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil. Mycorrhiza 13: 93100.