SEARCH

SEARCH BY CITATION

References

  • Achouak W, Normand P, Heulin T. 1999. Comparative phylogeny of rrs and nifH genes in the Bacillaceae. International Journal of Systematic Bacteriology 49: 961967.
  • Andrade OA, Mathre DE, Sands DC. 1994. Natural suppression of take-all of wheat in Montana soils. Plant and Soil 164: 918.
  • Bally R, Elmerich C. 2007. Biocontrol of plant diseases by associative and endophytic nitrogen-fixing bacteria. In: ElmerichC, NewtonWE, eds. Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Dordrecht, the Netherlands: Springer-Verlag, 171190.
  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kludge C, Preisfeld A et al. 2001. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Canadian Journal of Microbiology 47: 642652.
  • Blaha D, Prigent-Combaret C, Mirza MS, Moënne-Loccoz Y. 2006. Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiology Ecology 56: 455470.
  • Bruce KD, Hiorns WD, Hobman JL, Osborn AM, Strike P, Ritchie DA. 1992. Amplification of DNA from native populations of soil bacteria by using the polymerase chain reaction. Applied and Environmental Microbiology 58: 34133416.
  • Buckley DH, Schmidt TM. 2003. Diversity and dynamics of microbial communities in soils from agro-ecosystems. Environmental Microbiology 5: 441452.
  • Burkhead KD, Schisler DA, Slininger PJ. 1994. Pyrrolnitrin production by biological control agent Pseudomonas cepacia B37w in culture and in colonized wounds of potatoes. Applied and Environmental Microbiology 60: 20312039.
  • Cérémonie H, Boubakri H, Mavingui P, Simonet P, Vogel TM. 2006. Plasmid-encoded gamma-hexachlorocyclohexane degradation genes and insertion sequences in Sphingobium francense (ex-Sphingomonas paucimobilis Sp+). FEMS Microbiology Letters 257: 243252.
  • Chapon A, Guillerm AY, Delalande L, Lebreton L, Sarniguet A. 2002. Dominant colonisation of wheat roots by Pseudomonas fluorescens Pf29A and selection of the indigenous microflora in the presence of the take-all fungus. European Journal of Plant Pathology 108: 449459.
  • Colbach N, Lucas P, Meynard J-M. 1997. Influence of crop management on take-all development and disease cycles on winter wheat. Phytopathology 87: 2632.
  • Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity JM, Tiedje JM. 2005. The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Research 33: D294D296 (Database Issue).
  • Cook JR. 2003. Take-all of wheat. Physiological and Molecular Plant Pathology 62: 7386.
  • Coombs JT, Michelsen PP, Franco CMM. 2004. Evaluation of endophytic Actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biological Control 29: 359366.
  • Deangelis KM, Brodie EL, Desantis TZ, Andersen GL, Lindow SE, Firestone MK. 2008. Selective progressive response of soil microbial community to wild oat roots. ISME Journal 3: 168178.
  • DeSantis TZ, Stone CE, Murray SR, Moberg JP, Andersen GL. 2005. Rapid quantification and taxonomic classification of environmental DNA from both prokaryotic and eukaryotic origins using a microarray. FEMS Microbiology Letters 245: 271278.
  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL. 2006a. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology 72: 50695072.
  • DeSantis TZ Jr, Hugenholtz P, Keller K, Brodie EL, Larsen N, Piceno YM, Phan R, Andersen GL. 2006b. NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Research 34: W394W399.
  • Van Dijk K, Nelson EB. 1998. Inactivation of seed exudate stimulants of Pythium ultimum sporangium germination by biocontrol strains of Enterobacter cloacae and other seed-associated bacteria. Soil Biology & Biochemistry 30: 183192.
  • Dunne C, Crowley JJ, Moënne-Loccoz Y, Dowling DN, De Bruijn FJ, O’Gara F. 1997. Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity. Microbiology 143: 39213931.
  • Filion M, Hamelin RC, Bernier L, St-Arnaud M. 2004. Molecular profiling of rhizosphere microbial communities associated with healthy and diseased black spruce (Picea mariana) seedlings grown in a nursery. Applied and Environmental Microbiology 70: 35413551.
  • Goris J, De Vos P, Caballero-Mellado J, Park J, Falsen E, Quensen JF III, Tiedge JM, Vandamme P. 2004. Classification of the biphenyl- and polychlorinated biphenyl-degrading strain LB400T and relatives as Burkholderia xenovorans sp. nov. International Journal of Systematic and Evolutionary Microbiology 54: 16771681.
  • Gremion F, Chatzinotas A, Harms H. 2003. Comparative 16S rDNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal contaminated bulk and rhizosphere soil. Environmental Microbiology 5: 896907.
  • Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ. 2000. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Applied and Environmental Microbiology 66: 54885491.
  • Hebbar KP, Martel MH, Heulin T. 1998. Suppression of pre- and postemergence damping-off in corn by Burkholderia cepacia. European Journal of Plant Pathology 104: 2936.
  • Hornby D. 1979. Take-all decline: a theorist’s paradise. In: SchippersB, GamsW, eds. Soil-borne plant pathogens. New York, USA: Academic Press, 133156.
  • Hornby D, Bateman GL, Gutteridge RJ, Lucas P, Osbourn AE, Ward E, Yarham DJ. 1998. Take-all disease of cereals. In: HornbyD, ed. A regional perspective. Wallingford, Oxon, UK: CAB International, pp. 384.
  • Howell CR, Stipanovic RD. 1979. Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69: 480482.
  • Hugenholtz P 2002. Exploring prokaryotic diversity in the genomic era. Genome Biology 3: Reviews0003.1Reviews0003.8.
  • Huijberts GN, Eggink G, De Waard P, Huisman GW, Witholt B. 1992. Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3-hydroxyalkanoates) consisting of saturated and unsaturated monomers. Applied and Environmental Microbiology 58: 536544.
  • Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Haas D, Défago G. 1992. Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Molecular Plant–Microbe Interactions 5: 413.
  • Kim DS, Cook JR, Weller DM. 1997. Bacillus sp. L324-92 for biological control of three root diseases of wheat grown with reduced tillage. Phytopathology 87: 551558.
  • Kumar S, Tamura K, Jakobsen IB, Nei M. 2001. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17: 12441245.
  • Lebreton L, Lucas P, Dugas F, Guillerm AY, Schoeny A, Sarniguet A. 2004. Changes in population structure of the soilborne fungus Gaeumannomyces graminis var. tritici during continuous wheat cropping. Environmental Microbiology 6: 11741185.
  • Lebreton L, Gosme M, Lucas P, Guillerm-Erckelboudt A-Y, Sarniguet A. 2007. Linear relationship between Gaeumannomyces graminis var. tritici (Ggt) genotypic frequencies and disease severity on wheat roots in the field. Environmental Microbiology 9: 492499.
  • Lee SH, Ka JO, Cho JC. 2008. Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil. FEMS Microbiology Letters 285: 263269.
  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G et al. 2004. ARB: a software environment for sequence data. Nucleic Acids Research 32: 13631371.
  • Mavingui P, Tran Van V, Labeyrie E, Rances E, Vavre F, Simonet P. 2005. Efficient procedure for purification of obligate intracellular Wolbachia pipientis and representative amplification of its genome by multiple-displacement amplification. Applied and Environmental Microbiology 71: 69106917.
  • Mazzola M. 2002. Mechanisms of natural soil suppressiveness to soilborne diseases. Antonie van Leeuwenhoek 81: 557564.
  • Mazzola M, Cook RJ, Thomashow LS, Weller DM, Pierson LS III. 1992. Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Applied and Environmental Microbiology 58: 26162624.
  • McSpadden Gardener BB, Weller DM. 2001. Changes in populations of rhizosphere bacteria associated with take-all disease of wheat. Applied and Environmental Microbiology 67: 44144425.
  • Mougel C, Thioulouse J, Perriere G, Nesme X. 2002. A mathematical method for determining genome divergence and species delineation using AFLP. International Journal of Systematic and Evolutionary Microbiology 52: 573586.
  • Orso S, Gouy M, Navarro E, Normand P. 1994. Molecular phylogenetic analysis of Nitrobacter spp. International Journal of Systematic Bacteriology 44: 8386.
  • Palfreyman RW, Watson ML, Eden C, Smith AW. 1997. Induction of biologically active interleukin-8 from lung epithelial cells by Burkholderia (Pseudomonas) cepacia products. Infection and Immunity 65: 617622.
  • Pothier JF, Wisniewski-Dyé F, Weiss-Gayet M, Moënne-Loccoz Y, Prigent-Combaret C 2007. Promoter-trap identification of wheat seed extract-induced genes in the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp245. Microbiology 153: 36083622.
  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research 35: 71887196.
  • Quinto C, De La Vega H, Flores M, Leemans J, Cevallos MA, Pardo MA, Azpiroz R, De Lourdes Girard M, Calva E, Palacio R. 1985. Nitrogenase reductase: a functional multigene family in Rhizobium phaseoli. Proceedings of the National Academy of Sciences, USA 82: 11701174.
  • Raaijmakers JM, Weller D. 1998. Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Molecular Plant–Microbe Interactions 11: 144152.
  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y. 2009. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil. 321: 341361.
  • Russo A, Vettori L, Felici C, Fiaschi G, Morini S, Toffanin A. 2008. Enhanced micropropagation response and biocontrol effect of Azospirillum brasilense Sp245 on Prunus cerasifera L. clone Mr.S 2/5 plants. Journal of Biotechnology 134: 312319.
  • Ryder MH, Yan Z, Terrace TE, Rovira AD, Tang W, Correll RL. 1998. Use of strains of Bacillus isolated in China to suppress take-all and Rhizoctonia root rot, and promote seedling growth of glasshouse-grown wheat in Australian soils. Soil Biology & Biochemistry 31: 1929.
  • Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406425.
  • Sanguin H, Remenant B, Dechesne A, Thioulouse J, Vogel TM, Nesme X, Moënne-Loccoz Y, Grundmann GL. 2006a. Potential of a 16S rRNA-based taxonomic microarray for analyzing the rhizosphere effects of maize on Agrobacterium spp. and bacterial communities. Applied and Environmental Microbiology 72: 43024312.
  • Sanguin H, Herrera A, Oger-Desfeux C, Dechesne A, Simonet P, Navarro E, Vogel TM, Moënne-Loccoz Y, Nesme X, Grundmann GL. 2006b. Development and validation of a prototype 16S rRNA-based taxonomic microarray for Alphaproteobacteria. Environmental Microbiology 8: 289307.
  • Sanguin H, Kroneisen L, Gazengel K, Kyselkova M, Remenant B, Prigent-Combaret C, Grundmann GL, Sarniguet A, Moënne-Loccoz Y. 2008. Development of a 16S rRNA microarray approach for the monitoring of rhizosphere Pseudomonas populations associated with the decline of take-all disease of wheat. Soil Biology & Biochemistry 40: 10281039.
  • Sarniguet A, Lucas P. 1992. Evaluation of populations of fluorescent pseudomonads related to decline of take-all patch on turfgrass. Plant and Soil 145: 1115.
  • Sarniguet A, Lucas P, Lucas M. 1992a. Relationships between take-all, soil conduciveness to the disease, populations of fluorescent pseudomonads and nitrogen fertilizers. Plant and Soil 145: 1727.
  • Sarniguet A, Lucas P, Lucas M, Samson R. 1992b. Soil conduciveness to take-all of wheat: influence of the nitrogen fertilizers on the structure of populations of fluorescent pseudomonads. Plant and Soil 145: 2936.
  • Schwieger F, Tebbe CC. 1998. A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Applied and Environmental Microbiology 64: 48704876.
  • Sharifi-Tehrani A, Zala M, Natsch A, Moënne-loccoz Y, Défago G. 1998. Biocontrol of soil-borne fungal plant diseases by 2,4-diacetylphloroglucinol-producing fluorescent pseudomonads with different restriction profiles of amplified 16S rDNA. European Journal of Plant Pathology 104: 631643.
  • Simonet P, Normand P, Moiroud A, Lalonde M. 1985. Restriction enzyme digestion patterns of Frankia plasmids. Plant and Soil 87: 4960.
  • Smit E, Leeflang P, Gommans S, Van Den Broek J, Van Mil S, Wernars K. 2001. Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Applied and Environmental Microbiology 67: 22842291.
  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M et al. 2000. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406: 959964.
  • Stralis-Pavese N, Sessitsch A, Weilharter A, Reichenauer T, Riesing J, Csontos J, Murrell JC, Bodrossy L. 2004. Optimization of diagnostic microarray for application in analysing landfill methanotroph communities under different plant covers. Environmental Microbiology 6: 347363.
  • Taylor JD, Bevan JR, Crute IR, Reader SL. 1989. Genetic relationship between races of Pseudomonas syringae pv. pisi and cultivars of Pisum sativum. Plant Pathology 38: 364375.
  • Thomashow LS, Weller DM. 1988. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. Journal of Bacteriology 170: 34993508.
  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25: 48764882.
  • Van Niel CB, Allen MB. 1952. A note on Pseudomonas stutzeri. Journal of Bacteriology 64: 413422.
  • Vandenkoornhuyse P, Mahe S, Ineson P, Staddon P, Ostle N, Cliquet JB, Francez A-J, Fitter AH, Young JPW. 2007. Active root-inhabiting microbes identified by rapid incorporation of plant-derived carbon into RNA. Proceedings of the National Academy of Sciences, USA 104: 1697016975.
  • Vincent MN, Harrison LA, Brackin JM, Kovacevich PA, Mukerji P, Weller DM, Pierson EA. 1991. Genetic analysis of the antifungal activity of a soilborne Pseudomonas aureofaciens strain. Applied and Environmental Microbiology 57: 29282934.
  • Weller DM, Raaijmakers JM, McSpadden Niel BB, Thomashow LS. 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology 40: 309348.
  • Weller DM, Landa BB, Mavrodi OV, Schroeder KL, De La Fuente L, Blouin Bankhead S, Allende Molar R, Bonsall RF, Mavrodi DV, Thomashow LS. 2007. Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biology 9: 420.
  • Yin B, Valinsky L, Gao X, Becker JO, Borneman J. 2003. Bacterial rRNA genes associated with soil suppressiveness against the plant-parasitic nematode Heterodera schachtii. Applied and Environmental Microbiology 69: 15731580.
  • Zadocks JC, Chang TT, Konzak CF. 1974. A decimal code for the growth stages of cereals. Weed Research 14: 415421.