SEARCH

SEARCH BY CITATION

References

  • Buck AL. 1981. New equations for computing vapor pressure and enhancement factor. Journal of Applied Meteorology 20: 15271532.
  • Calfapietra C, Gielen B, Galema ANJ, Lukac M, De Angelis P, Moscatelli MC, Ceulmans R, Scarascia-Mugnozza G. 2003. Free-air CO2 enrichment (FACE) enhances biomass production in a short-rotation poplar plantation. Tree Physiology 23: 805814.
  • Cannell MGR, Dewar RC. 1994. Carbon allocation in trees: a review of concepts for modelling. Advances in Ecological Research 25: 59104.
  • Clark AC, Phillips DR, Fredrick DJ. 1986. Weight, volume, and physical properties of major hardwood species in the Piedmont. Asheville, NC, USA: USDA Forest Service, Southeastern Forest Experiment Station.
  • DeLucia EH, Hamilton JG, Naidu SL, Thomas RB, Andrews JA, Finzi AC, Lavine M, Matamala R, Mohan JE, Hendrey GR et al. 1999. Net primary production of a forest ecosystem with experimental CO2 enrichment. Science 284: 11771179.
  • DeLucia EH, George K, Hamilton JG. 2002. Radiation-use efficiency of a forest exposed to elevated concentrations of atmospheric carbon dioxide. Tree Physiology 22: 10031010.
  • DeLucia EH, Moore DJ, Norby RJ. 2005. Contrasting responses of forest ecosystems to rising atmospheric CO2: implications for the global C cycle. Global Biogeochemical Cycles 19: GB3006.
  • Dewar RC. 1993. A root-shoot partitioning model-based on carbon-nitrogen water interactions and Munch phloem flow. Functional Ecology 7: 356368.
  • Dewar RC, Franklin O, Mäkelä A, McMurtrie RE, Valentine HT. 2009. Optimal function explains forest responses to global change. BioScience 59: 127139.
  • Eno CF. 1960. Nitrate production in the field by incubating the soil in polyethylene bags. Soil Science Society of America Journal 24: 277299.
  • Fang Z, Borders BE, Bailey RL. 2000. Compatible volume-taper models for loblolly and slash pine based on a system with segmented-stem form factors. Forest Science 46: 112.
  • Finzi AC, Allen AS, DeLucia EH, Ellsworth DS, Schlesinger WH. 2001. Forest litter production, chemistry and decomposition following two years of Free-Air CO2 Enrichment Ecology. Ecology82: 470484.
  • Finzi AC, DeLucia EH, Hamilton JG, Richter DD, Schlesinger WH. 2002. The nitrogen budget of a pine forest under free air CO2 enrichment. Oecologia 132: 567578.
  • Finzi AC, Moore DJP, DeLucia EH, Lichter J, Hofmockel KS, Jackson RB, Kim H-S, McCarthy HR, Oren R, Pippen JS et al. 2006. Progressive N limitation of ecosystem processes under elevated CO2 in a warm-temperature forest. Ecology 87: 1525.
  • Finzi AC, Norby RJ, Calfapietra C, Gallet-Budynek A, Gielen B, Holmes WE, Hoosbeek MR, Iversen CM, Jackson RB, Kubiske ME et al. 2007. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proceedings of the National Academy of Sciences, USA 104: 1401414019.
  • Franklin O, McMurtrie RE, Iversen CM, Crous K, Finzi A, Tissue D, Ellsworth D, Oren R, Norby RJ. 2009. Forest fine root production and nitrogen use under elevated CO2: contrasting responses in evergreen and deciduous trees explained by a common principle. Global Change Biology 15: 132144.
  • Garcia M, Ovasapyan T, Greas M, Treseder KK. 2008. Mycorrhizal dynamics under elevated CO2 and nitrogen fertilization in a warm temperate forest. Plant and Soil 303: 301310.
  • Gielen B, Calfapietra C, Lukac M, Wittig VE, De Angelis P, Janssens IA, Moscatelli MC, Grego S, Cotrufo MF, Godbold DL et al. 2005. Net carbon storage in a poplar plantation (POPFACE) after three years of free-air CO2 enrichment. Tree Physiology 25: 13991408.
  • Gill RA, Polley HW, Johnsen HB, Anderson LJ, Maherali H, Jackson RB. 2002. Nonlinear grassland responses to past and future atmospheric CO2. Nature 417: 279282.
  • Hamilton JG, DeLucia EH, George K, Naidu SL, Finzi AC, Schlesinger WH. 2002. Forest carbon balance under elevated CO2. Oecologia 131: 250260.
  • Hendrey GR, Ellsworth DS, Lewin KF, Nagy J. 1999. A free-air enrichment system for exposing tall vegetation to elevated atmospheric CO2. Global Change Biology 5: 293309.
  • Hofmockel KS, Schlesinger WH. 2007. Carbon dioxide effects on heterotrophic dinitrogen fixation in a temperate pine forest. Soil Science Society of America Journal 71: 140144.
  • Jackson RB, Cook CW, Pippen JS, Palmer SM. 2009. Increased belowground biomass and soil CO2 fluxes after a decade of carbon dioxide enrichment in a warm-temperate forest. Ecology 90: 33523366.
  • Johnsen KH, Teskey B, Samuelson L, Butnor J, Sampson D, Sanchez F, Maier C, McKeand S. 2004. Carbon sequestration in loblolly pine plantations: methods, limitations and research needs for estimating storage pools. In: RauscherMH, JohnsenKH, eds. Southern Forest Science: past, present, and future. GTR-SRS-75. Asheville, NC, USA: USDA Forest Service, Southern Research Station, 394.
  • Kinerson RS, Ralston CW, Wells CG. 1977. Carbon cycling in a loblolly pine plantation. Oecologia 29: 110.
  • King JS, Kubiske ME, Pregitzer KS, Hendrey GR, McDonald EP, Giardina CP, Quinn VS, Karnosky DF. 2005. Tropospheric O3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2. New Phytologist 168: 623636.
  • Kohler MA, Nordenson TJ, Fox WE. 1955. Evaporation from pans and lakes. In: US Weather Bureau Reseach Paper 38. 21.
  • Körner C. 2006. Plant CO2 responses: an issue of definition, time and resource supply. New Phytologist 172: 393411.
  • LaDeau SL, Clark JS. 2001. Rising CO2 levels and the fecundity of forest trees. Science 292: 9598.
  • LaDeau SL, Clark JS. 2006. Elevated CO2 and tree fecundity: the role of tree size, inter-annual variability and population heterogeneity. Global Change Biology 12: 822833.
  • Liberloo M, Calfapietra C, Lukac M, Godbold D, Luos ZB, Polle A, Rubino MR, Kull O, Marek M, Raines C et al. 2006. Woody biomass production during the second rotation of a bio-energy Populus plantation increases in a future high CO2 world. Global Change Biology 12: 10941106.
  • Liski J, Korotkov AV, Prins CFL, Karjalainen T, VIctor DG, Kauppi PE. 2003. Increased carbon sink in temperate and boreal forests. Climatic Change 61: 8999.
  • Litton CM, Raich JW, Ryan MG. 2007. Review: carbon allocation in forest ecosystems. Global Change Biology 13: 20892109.
  • Matamala R, Schlesinger WH. 2000. Effects of elevated atmospheric CO2 on fine root production and activity in an intact temperate forest ecosystem. Global Change Biology 6: 967979.
  • McCarthy HR, Oren R, Finzi AC, Johnsen KH. 2006a. Canopy leaf area constrains [CO2]-induced enhancement of productivity and partitioning among aboveground carbon pools. Proceedings of the National Academy of Sciences, USA 103: 1635619361.
  • McCarthy HR, Oren R, Kim H-K, Johnsen KH, Maier C, Pritchard SG, Davis MA. 2006b. Interaction of ice storms and management practices on current carbon sequestration in forests with potential mitigation under future CO2 atmosphere. Journal of Geophysical Research – Atmospheres 111: D15103.
  • McCarthy HR, Oren R, Finzi AC, Ellsworth DS, Kim H-K, Johnsen KH, Millar B. 2007. Temporal dynamics and spatial variability in the enhancement of canopy leaf area under elevated atmospheric CO2. Global Change Biology 13: 24792497.
  • McConnaughay KDM, Coleman JS. 1999. Biomass allocation in plants: ontogeny or optimality?. A test along three resource gradients Ecology 80: 25812593.
  • Moore DJP, Aref S, Ho RM, Pippen JS, Hamilton JG, DeLucia EH. 2006. Annual basal area increment and growth duration of Pinus taeda in response to eight years of free-air carbon dioxide enrichment. Global Change Biology 12: 13671377.
  • Naidu SL, DeLucia EH, Thomas RB. 1998. Contrasting patterns of biomass allocation in dominant and suppressed loblolly pine. Canadian Journal of Forest Research 28: 11161124.
  • Norby RJ, Hanson PJ, O’Neill EG, Tschaplinski TJ, Weltzin JF, Hansen RA, Cheng W, Wullschleger SD, Gunderson CA, Edwards NT et al. 2002. Net primary productivity of a CO2-enriched deciduous forest and the implications for carbon storage. Ecological Applications 12: 12611266.
  • Norby RJ, Ledford J, Reilly CD, Miller NE, O’Neill EG. 2004. Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proceedings of the National Academy of Sciences, USA 101: 96899693.
  • Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulmans R et al. 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences, USA 102: 1805218056.
  • Nowak RS, Ellsworth DS, Smith SD. 2004. Functional responses of plants to elevated atmospheric CO2– do photosynthetic and productivity data from FACE experiments support early predictions? New Phytologist 162: 253280.
  • Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schäfer KVR, McCarthy H, Hendrey G, McNulty SG et al. 2001. Soil fertility limits carbon sequestration by forest ecosystems in a CO2– enriched atmosphere. Nature 411: 469472.
  • Osmond B, Ananyev G, Berry J, Langdon C, Kolber Z, Lin G, Monson R, Nichol C, Rascher U, Schurr U et al. 2004. Changing the way we think about global change research: scaling up in experimental ecosystem science. Global Change Biology 10: 393407.
  • Pacala SW, Hurtt GC, Baker D, Peylin P, Houghton RA, Birdsey RA, Heath L, Sundquist ET, Stallard RF, Ciais P et al. 2001. Consistent land- and atmosphere-based U.S. carbon sink estimates. Science 292: 23162320.
  • Palmroth S, Oren R, McCarthy HR, Johnsen KH, Finzi AC, Butnor JR, Ryan MG, Schlesinger WH. 2006. Aboveground sink strength in forests controls the allocation of carbon below ground and its [CO2]-induced enhancement. Proceedings of the National Academy of Sciences, USA 103: 1936229367.
  • Phillips RL, Whalen SC, Schlesinger WH. 2001. Influence of atmospheric CO2 enrichment on nitrous oxide flux in a temperate forest. Global Biogeochemical Cycles 15: 741752.
  • Pritchard SG, Rogers HH, Davis MA, Van Santen E, Prior SA, Schlesinger WH. 2001. The influence of elevated atmospheric CO2 on fine root dynamics of an intact temperate forest. Global Change Biology 7: 829837.
  • Pritchard SG, Strand AE, McCormack ML, Davis MA, Finzi AC, Jackson RB, Matamala R, Rogers HH, Oren R. 2008a. Fine root dynamics in a loblolly pine forest are influenced by free-air-CO2-enrichment: a six-year-minirhizotron study. Global Change Biology 14: 588602.
  • Pritchard SG, Strand AE, McCormack ML, Davis MA, Oren R. 2008b. Mycorrhizal and rhizomorph dynamics in a loblolly pine forest during 5 years of free-air-CO2-enrichment. Global Change Biology 14: 12521264.
  • Ryan MG. 1991. A simple method for estimating gross carbon budgets for vegetation in forest ecosystems. Tree Physiology 9: 255266.
  • Schäfer KVR, Oren R, Ellsworth DS, Lai C-T, Herrick JD, Finzi AC, Richter DD, Katul GG. 2003. Exposure to an enriched CO2 atmosphere alters carbon assimilation and allocation in a pine forest ecosystem. Global Change Biology 9: 13781400.
  • Schimel DS, Melillo J, Tian H, McGuire AD, Kicklighter D, Kittel T, Rosenbloom N, Running S, Thornton P, Ojima D et al. 2000. Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science 287: 20042006.
  • Schultz RP. 1997. Loblolly pine: the ecology and culture of loblolly pine (Pinus taeda L.). Washington DC, WA, USA: USDA Forest Service, 493.
  • Sokal RR, Rohlf FJ. 1995. Biometry. New York, NY, USA: W.H. Freeman and Company.
  • Sparks JP, Walker J, Turnipseed A, Guenther A. 2008. Dry nitrogen deposition estimates over a forest experiencing free air CO2 enrichment. Global Change Biology 14: 768781.
  • Strain BR, Bazzaz FA 1983. Terrestrial plant communities. In: LemonE, ed. CO2 and plants: the response of plants to rising levels of atmospheric carbon dioxide. Washington DC, WA, USA: AAAS, 177222.
  • Thornley JHM. 1972. A balanced quantitative model for root:shoot ratios in vegetative plants. Annals of Botany 36: 431441.
  • Ward EJ, Oren R, Sigurdsson BJ, Jarvis PG, Linder S. 2008. Fertilization effects on mean stomatal conductance are mediated through changes in the hydraulic attributes of mature Norway spruce trees. Tree Physiology 28: 579596.
  • Way DA, LaDeau SL, McCarthy HR, Clark JS, Oren R, Finzi AC, Jackson RB. 2009. Greater seed production in elevated CO2 is not accompanied by reduced seed quality in Pinus taeda L. Global Change Biology: DOI: 10.1111/j.1365-2486.2009.02007.x.