Regulation of synthesis and degradation of a sulfolipid under sulfur-starved conditions and its physiological significance in Chlamydomonas reinhardtii

Authors


Author for correspondence:
Norihiro Sato
Tel: +81 42 6766716
Email: nsato@ls.toyaku.ac.jp

Summary

  • Regulation of synthesis and degradation of sulfoquinovosyl diacylglycerol (SQDG), one of the membrane lipids that construct thylakoids, under sulfur (S)-starved conditions and its physiological significance were explored in a green alga, Chlamydomonas reinhardtii.
  • Here, we used sac1 and sac3 mutants defective in response to ambient S-status to characterize the system of known induction of SQDG degradation by S starvation that ensures a major S source for protein synthesis. The SQDG synthesis system was monitored in the wild type during S starvation. An SQDG-deficient mutant, hf-2, was utilized to discover functions where SQDG metabolism participates during S starvation.
  • The induction of SQDG degradation was largely repressed in both sac1 and sac3 mutants. The SQDG synthesis capacity was increased by 40% after S starvation, with a sixfold elevation in the mRNA level of the SQD1 gene for SQDG synthesis. Compared with the wild type, hf-2 had decreased protein accumulation, photosystem (PS) I stability and growth rate.
  • A role of SQDG as an S storage lipid is fulfilled under the control of both SAC1 and SAC3 genes, and it is essential for proper protein synthesis in acclimatization of cells to S starvation. The enhancement in SQDG synthesis may reflect the importance of SQDG as the membrane lipid that stabilizes the PSI complex.

Ancillary