SEARCH

SEARCH BY CITATION

References

  • Aerts R. 1990. Nutrient use efficiency in evergreen and deciduous species from heathlands. Oecologia 84: 391397.
  • Allen SE, ed. 1989. Chemical analysis of ecological materials, 2nd edn. Oxford, UK: Blackwell Scientific Publications.
  • Arnold WN. 1987. Hydrolytic enzymes. In: Berry DR, Russell I, Stewart GG, eds. Yeast biotechnology. London, UK: Allen & Unwin, 369400.
  • Bartlett EM, Lewis DH. 1973. Surface phosphatase activity of mycorrhizal roots of beech. Soil Biology and Biochemistry 5: 249257.
  • Beever RE, Burns DJW. 1980. Phosphorus uptake, storage and utilization by fungi. Advances in Botanical Research 8: 128219.
  • Benner JW, Conroy S, Lunch CK, Toyoda N, Vitousek PM. 2007. Phosphorus fertilization increases the abundance and nitrogenase activity of the cyanolichen Pseudocyphellaria crocata in Hawaiian montane forests. Biotropica 39: 400405.
  • Benner JW, Vitousek PM. 2007. Development of a diverse epiphyte community in response to phosphorus fertilization. Ecology Letters 10: 628636.
  • Bragazza L, Freeman C, Jones T, Rydin H, Limpens J, Fenner N, Ellis T, Gerdol R, Hájek M, Hájek T et al. 2006. Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proceedings of the National Academy of Sciences, USA 103: 1938619389.
  • Crittenden PD. 1989. Nitrogen relations of mat-forming lichens. In: Boddy L, Marchant R, Read DJ, eds. Nitrogen, phosphorus and sulphur utilization by fungi. Cambridge, UK: Cambridge University Press, 243268.
  • Crittenden PD. 1998. Nutrient exchange in an Antarctic macrolichen during summer snowfall–snow melt events. New Phytologist 139: 697707.
  • Crittenden PD, Kałucka I, Oliver E. 1994. Does nitrogen supply limit the growth of lichens? Cryptogamic Botany 4: 143155.
  • Dahlman L, Persson J, Palmqvist K, Näsholm T. 2004. Organic and inorganic nitrogen uptake in lichens. Planta 219: 459467.
  • Davis RH. 2000. Neurospora: contributions of a model organism. Oxford, UK: Oxford University Press.
  • Ellis CJ, Crittenden PD, Scrimgeour CM, Ashcroft CJ. 2005. Translocation of 15N indicates nitrogen recycling in the mat-forming lichen Cladonia portentosa. New Phytologist 168: 423434.
  • Ellis CJ, Crittenden PD, Scrimgeour CM. 2004. Soil as a potential source of nitrogen for mat-forming lichens. Canadian Journal of Botany 82: 145149.
  • Ellis CJ, Crittenden PD, Scrimgeour CM, Ashcroft C. 2003. The natural abundance of 15N in mat-forming lichens. Oecologia 136: 115123.
  • Güsewell S. 2004. N:P ratios in terrestrial plants: variation and functional significance. New Phytologist 164: 243266.
  • Hayman G, Vincent KJ, Lawrence H, Smith M, Davies M, Hasler S, Sutton M, Tang YS, Dragosits U, Love L et al. 2004. Management and operation of the UK Acid Deposition Monitoring Network: data summary for 2002 (Report AEAT/ENV/R/1696). Abingdon, UK: AEA Technology PLC.
  • Hogan EJ. 2009. Nitrogen–phosphorus relationship in lichens. PhD thesis, University of Nottingham, Nottingham, UK.
  • Hogan EJ, Minnullina G, Smith RI, Crittenden PD. 2010. Effects of nitrogen enrichment on phosphatase activity and nitrogen : phosphorus relationships in Cladonia portentosa. New Phytologist, doi: 10.1111/j.1469-8137.2010.03222.x.
  • Holmes RM, Aminot A, Kérouel R, Hooker BA, Peterson BJ. 1999. A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 56: 18011808.
  • Hyvärinen M, Crittenden PD. 1998. Relationships between atmospheric nitrogen inputs and the vertical nitrogen and phosphorus concentration gradients in the lichen Cladonia portentosa. New Phytologist 140: 519530.
  • Hyvärinen M, Crittenden PD. 2000. 33P translocation in the thallus of the mat-forming lichen Cladonia portentosa. New Phytologist 145: 281288.
  • Johnson D, Leake JR, Lee JA. 1999. The effects of quantity and duration of simulated pollutant nitrogen deposition on root-surface phosphatase activities in calcareous and acid grasslands: a bioassay approach. New Phytologist 141: 433442.
  • Kroehler CJ, Antibus RK, Linkins AE. 1988. The effects of organic and inorganic phosphorus concentration on the acid phosphatase activity of ectomycorrhizal fungi. Canadian Journal of Botany 66: 750756.
  • Lang GE, Reiners WA, Heier RK. 1976. Potential alteration of precipitation chemistry by epiphytic lichens. Oecologia 25: 229241.
  • McCune B, Caldwell BA. 2009. A single phosphorus treatment doubles growth of cyanobacterial lichen transplants. Ecology 90: 567570.
  • NEGTAP. 2001. Transboundary air pollution: acidification, eutrophication and ground-level ozone in the UK. London, UK: Department for Environment, Food and Rural Affairs.
  • Phoenix GK, Booth RE, Leake JR, Read DJ, Grime JP, Lee JA. 2003. Simulated pollutant nitrogen deposition increases P demand and enhances root-surface phosphatase activities of three plant functional types in calcareous grassland. New Phytologist 161: 279289.
  • Phuyal M, Artz RRE, Sheppard L, Leith ID, Johnson D. 2008. Long-term nitrogen deposition increases phosphorus limitation of bryophytes in an ombrotrophic bog. Plant Ecology 196: 111121.
  • Pilkington MG, Caporn SJM, Carroll JA, Cresswell N, Lee JA, Emmett BA, Johnson D. 2005. Effects of increased deposition of atmospheric nitrogen on an upland Calluna moor: N and P transformations. Environmental Pollution 135: 469480.
  • Remke E, Brouwer E, Kooijman A, Blindow I, Esselink H, Roelofs JGM. 2009. Even low to medium nitrogen deposition impacts vegetation of dry, coastal dunes around the Baltic Sea. Environmental Pollution 157: 792800.
  • Rodwell JS, ed. 1991. British plant communities. Vol. 2. Mires and heaths. Cambridge, UK: Cambridge University Press.
  • Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A et al. 2000. Global biodiversity scenarios for the year 2100. Science 287: 17701774.
  • Sheppard LJ, Crossley A, Leith ID, Hargreaves KJ, Carfrae JA, vanDijk N, Cape JN, Sleep D, Fowler D, Raven JA. 2004. An automated wet deposition system to compare the effects of reduced and oxidised N on ombrotrophic bog species: practical considerations. Water, Air, and Soil Pollution: Focus 4: 197205.
  • Smith DC. 1960. Studies in the physiology of lichens. 1. The effects of starvation and of ammonia absorption upon the nitrogen content of Peltigera polydactyla. Annals of Botany 24: 5262.
  • Smith SE, Read D. 2008. Mycorrhizal symbiosis, 3rd edn. Amsterdam, the Netherlands: Academic Press.
  • Tomassen HBM, Smolders AJP, Lamers LPM, Roelofs JGM. 2005. How bird droppings can affect the vegetation composition of ombrotrophic bogs. Canadian Journal of Botany 83: 10461056.
  • Turner BL, Baxter R, Ellwood NTW, Whitton BA. 2001. Characterization of the phosphatase activities of mosses in relation to their environment. Plant, Cell and Environment 24: 11651176.
  • van Veldhoven PP, Mannaerts GP. 1987. Inorganic and organic phosphate measurements in the nanomolar range. Analytical Biochemistry 161: 4548.
  • Walker TR, Crittenden PD, Young SD. 2003. Regional variation in the chemical composition of winter snow pack and terricolous lichens in relation to sources of acid emissions in the USA river basin, northeast European Russia. Environmental Pollution 125: 401412.
  • Whitton BA, Al-Shehri AM, Ellwood NTW, Turner BL. 2005. Ecological aspects of phosphatase activity in cyanobacteria, eukaryotic algae and bryophytes. In: Turner BL, Frossard E, Baldwin DS, eds. Organic phosphorus in the environment. Wallingford, UK: CABI Publishing, 205241.