• chloroplast translation;
  • NOA1/RIF1;
  • Os02g01440;
  • plant cGTPase;
  • rice (Oryza sativa)


  • The bacterial protein YqeH is a circularly permuted GTPase with homologs encoded by plant nuclear genomes. The rice homolog OsNOA1/RIF1 is encoded by the single-copy gene Os02g01440. OsNOA1/RIF1 is expressed in different tissues and is light-inducible. The OsNOA1/RIF1-EYFP fusion protein was targeted to chloroplasts in transgenic Arabidopsis plants. In addition, the rice homolog was able to rescue most of the growth phenotypes in an Arabidopsis rif1 mutant.
  • Rice (Oryza sativa) OsNOA1/RIF1 RNAi mutant seedlings were chlorotic with reduced pigment contents and lower photosystem II (PSII) efficiency. However, the expressions of the chloroplast-encoded genes rbcL, atpB, psaA and psbA were not affected. By contrast, reduced abundance of the chloroplast 16S rRNA was observed in the mutant.
  • Quantitative iTRAQ-LC-MS/MS proteomics investigations revealed proteome changes in the rice mutant consistent with the expected functional role of OsNOA1/RIF1 in chloroplast translation. The RNAi mutant showed significantly decreased expression levels of chloroplast-encoded proteins as well as nuclear-encoded components of chloroplast enzyme complexes. Conversely, upregulation of some classes of nonchloroplastic proteins, such as glycolytic and phenylpropanoid pathway enzymes, was detected.
  • Our work provides independent indications that a highly conserved nuclear-encoded cGTPase of likely prokaryotic origin is essential for proper chloroplast ribosome assembly and/or translation in plants.