SEARCH

SEARCH BY CITATION

References

  • Abrams MD, Kubiske ME. 1990. Leaf structural characteristics of 31 hardwood and conifer tree species in central Wisconsin – influence of light regime and shade-tolerance rank. Forest Ecology and Management 31: 245253.
  • Agarwal D, Baldocchi D, Goode M, Humphrey M, Van Ingen C, Papale D, Reichstein M, Rodriguez M, Ryu Y, Vargas R. 2008. An evolving La Thuile Fluxnet dataset and support infrastructure. Geophysical Research Abstracts 10, EGU2008-A-04835, 2008, EGU General Assembly 2008.
  • Anderson JE, Plourde LC, Martin ME, Braswell BH, Smith M-L, Dubayah RO, Hofton MA, Blair JB. 2008. Integrating waveform LiDAR with hyperspectral imagery for inventory of a northern temperate forest. Remote Sensing of Environment 112: 18561870.
  • Anderson JR, Hardy EE, Roach JR, Witmer RE. 1976. A land use and land cover classification system for use with remote sensor data. US Geological Survey Professional Paper #964, revising US Geological Survey Circular 671. Washington, D.C., USA: U.S. Government Printing Office.
  • Anderson MC, Norman JM, Kustas WP, Houborg R, Starks PJ, Agam N. 2008. A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales. Remote Sensing of Environment 112: 42274241.
  • Andrew M, Ustin SL. 2008. The role of environmental context in mapping invasive plants with hyperspectral image data. Remote Sensing of Environment 112: 43014317.
  • Andrew ME, Ustin SL. 2009. Habitat suitability modelling of an invasive plant with advanced remote sensing data. Diversity and Distributions 15: 627640.
  • Asner GP, Hughes RF, Vitousek PM, Knapp DE, Kennedy-Bowdoin T, Boardman J, Martin RE, Eastwood M, Green R. 2008a. Invasive plants transform the three-dimensional structure of rain forests. Proceedings of the National Academy of Sciences, USA 105: 45194523.
  • Asner GP, Jones MO, Martin RE, Knapp DE, Hughes RF. 2008b. Remote sensing of native and invasive species in Hawaiian forests. Remote Sensing of Environment 112: 19121926.
  • Asner GP, Knapp DE, Jones MO, Kennedy-Bowdoin T, Martin RE, Boardman J, Field CB. 2007. Carnegie airborne observatory: in-flight fusion of hyperspectral imaging and waveform light detection and ranging (wLiDAR) for three-dimensional studies of ecosystems. Journal of Applied Remote Sensing 1: 013536. doi: 10.1117/1.2794018.
  • Asner GP, Levick SR, Kennedy-Bowdoin T, Knapp DE, Emerson R, Jacobson J, Colgan MS, Martin RE. 2009a. Large-scale impacts of herbivores on the structural diversity of African savannas. Proceedings of the National Academy of Sciences, USA 106: 49474952.
  • Asner GP, Martin RE. 2008. Spectral and chemical analysis of tropical forests: scaling from leaf to canopy levels. Remote Sensing of Environment 112: 39583970.
  • Asner GP, Martin RE. 2009. Airborne spectranomics: mapping canopy chemical and taxonomic diversity in tropical forests. Frontiers in Ecology and Environment 7: 269276.
  • Asner GP, Martin RE, Ford AJ, Metcalf DJ, Liddell MJ. 2009b. Leaf chemical and spectral diversity in Australian tropical forests. Ecological Applications 19: 236253.
  • Asner GP, Vitousek PM. 2005. Remote analysis of biological invasion and biogeochemical change. Proceedings of the National Academy of Sciences, USA 102: 43834386.
  • Barnsley MJ, Settle J, Cutter MA, Lobb DR, Teston F. 2004. The PROBA/CHRIS Mission: a low-cost smallsat for hyperspectral multiangle observations of the earth surface and atmosphere. IEEE Transactions on Geoscience and Remote Sensing 42: 15121520.
  • Barton CVM, North PRJ. 2001. Remote sensing of canopy light use efficiency using the photochemical reflectance index – model and sensitivity analysis. Remote Sensing of Environment 78: 264273.
  • Berry J, Björkman O. 1980. Photosynthetic responses and adaptation to temperature in higher plants. Annual Review of Plant Physiology 31: 491543.
  • Bloom AJ, Chapin FS III, Mooney HA. 1985. Resource limitation in plants – an economic analogy. Annual Review of Ecology and Systematics 16: 363392.
  • Bonan GB, Levis S, Kergoat L, Oleson KW. 2002. Landscapes as plant functional types: an integrating concept for climate and ecosystem models. Global Biogeochemical Cycles 16: 517.
  • Box EO. 1995. Factors determining tree species and plant functional types. Vegetation 121: 101116.
  • Carlson KM, Asner GP, Hughes RF, Ostertag R, Martin RE. 2007. Hyperspectral remote sensing of canopy biodiversity in Hawaiian lowland rainforests. Ecosystems 10: 536549.
  • Chapin FS III, Bret-Hart MS, Hobbie SE, Zhong H. 1996. Plant functional types as predictors of transient responses of Arctic vegetation to global change. Journal of Vegetation Science 7: 347358.
  • Chapin FS III, Walker BH, Hobbs RJ, Hooper DU, Lawton JH, Sala OE, Tilman D. 1997. Biotic control over the functioning of ecosystems. Science 277: 500504.
  • Chopping M, Su LH, Laliberte A, Rango A, Peters DPC, Kollikkathara N. 2006. Mapping shrub abundance in desert grasslands using geometric-optical modeling and multi-angle remote sensing with CHRIS/Proba. Remote Sensing of Environment 104: 6273.
  • Clausen J, Heisey WM. 1958. Experimental studies on the nature of species IV. Genetic structure of ecological races. Washington, DC, USA: Carnegie Institute. Carnegie Institution of Washington Publication 615.
  • Clausen J, Keck DD, Heisey WM. 1948. Experimental studies on the nature of species III. Environmental responses of climatic races of Achillea. Washington, DC, USA: Carnegie Institute. Carnegie Institute of Washington Publication 581.
  • Curran PJ. 1989. Remote-sensing of foliar chemistry. Remote Sensing of Environment 30: 271278.
  • Davidson A, Csillag F. 2003. A comparison of three approaches for predicting C4 species cover of northern mixed grass prairie. Remote Sensing of Environment 86: 7082.
  • DeFries RS, Field CB, Fung I, Justice CO, Los S, Matson PA, Matthews E, Mooney HA, Potter CS, Prentice K et al. 1995. Mapping the land-surface for global atmosphere-biosphere models – toward continuous distributions of vegetations functional-properties. Journal of Geophysical Research-Atmospheres 100(D10): 2086720882.
  • DeFries RS, Townshend JRG, Hansen MC. 1999. Continuous fields of vegetation characteristics at the global scale at 1-km resolution. Journal of Geophysical Research 104(D14): 1691116923.
  • Dennison PE, Roberts DA. 2003. Endmember selection for multiple endmember spectral mixture analysis using endmember average RSME. Remote Sensing of Environment 87: 123135.
  • Diaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Marti G, Grime JP, Zarrinkamar F, Asri Y et al. 2004. The plant traits that drive ecosystems: evidence from three continents. Journal of Vegetation Science 15: 295304.
  • Ehleringer JS, Werk KS. 1986. Modifications of solar-radiation absorption patterns and implications for carbon gain at the leaf level. In: Givnish TJ, ed. On the economy of plant form and function. Cambridge, UK: Cambridge University Press, 5782.
  • Elvidge CD. 1990. Visible and near infrared reflectance characteristics of dry plant materials. International Journal of Remote Sensing 11: 17751795.
  • Feret J-B, François C, Asner GP, Gitelson AA, Martin RE, Bidel LPR, Ustin SL, le Maire G, Jacquemoud S. 2008. PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments. Remote Sensing of Environment 112: 30303043.
  • Field CB. 1991. Ecological scaling of carbon gain to stress and resource availability. In: Mooney HA, Winner WE, Pell EJ, eds. Response of plants to multiple stresses. San Diego, CA, USA: Academic Press, 3565.
  • Field CB, Chapin FS III, Matson PA, Mooney HA. 1992. Responses of terrestrial ecosystems to the changing atmosphere: a resource-based approach. Annual Review of Ecology and Systematics 23: 201235.
  • Field CB, Mooney HA. 1986. The photosynthesis–nitrogen relationships of wild plants. In: Givnish T, ed. On the economy of plant form and function. New York, NY, USA: Cambridge University Press, 2555.
  • Friedl MA, McIver DK, Hodges JCF, Zhang XY, Muchoney D, Strahler AH, Woodcock CE, Gopal S, Schneider A, Cooper A et al. 2002. Global land cover mapping from MODIS: algorithms and early results. Remote Sensing of Environment 83: 287302.
  • Fritz S, Bartholomé E, Belward A, Hartley A, Stibig H-J, Eva E, Mayaux P, Bartalev S, Latifovic R, Kolmert S et al. 2003. Harmonisation, mosaicing and production of the Global Land Cover 2000 database (beta version). Publication of the European Commission EUR 20849 EN . Luxembourg city, Luxembourg: Office for Official Publications of the European Communities.
  • Fuentes DA, Gamon JA, Cheng YF, Claudio HC, Qiu HL, Mao ZY, Sims DA, Rahman AF, Oechel W, Luo HY. 2006. Mapping carbon and water vapor fluxes in a chaparral ecosystem using vegetation indices derived from AVIRIS. Remote Sensing of Environment 103: 312323.
  • Fuentes DA, Gamon JA, Qiu H-L, Sims DA, Roberts DA. 2001. Mapping Canadian boreal forest vegetation using pigment and water absorption features derived from the AVIRIS sensor. Journal of Geophysical Research 106: 3356533577.
  • Gamon JA. 2008. Tropical remote sensing – opportunities and challenges. In: Kalacska M, Sanchez-Azofeifa GA, eds. Hyperspectral remote sensing of tropical and subtropical forests. Boca Raton, FL, USA: CRC Press Taylor & Francis Group, 297304.
  • Gamon JA, Coburn C, Flanagan L, Huemmrich KF, Kiddle C, Sanchez-Azofeifa GA, Thayer D, Vescovo L, Gianelle D, Sims D et al. 2010. SpecNet revisited: bridging flux and remote sensing communities. Canadian Journal of Remote Sensing, in press.
  • Gamon JA, Huemmrich KF, Peddle DR, Chen J, Fuentes D, Hall FG, Kimball JS, Goetz S, Gu J, McDonald KC et al. 2004. Remote sensing in BOREAS: lessons learned. Remote Sensing of Environment 89: 139162.
  • Gamon JA, Rahman AF, Dungan JL, Schildhauer M, Huemmrich KF. 2006. Spectral Network (SpecNet): what is it and why do we need it? Remote Sensing of Environment 103: 227235.
  • Gamon JA, Serrano L, Surfus JS. 1997. The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 112: 492501.
  • Garnier E, Cortez J, Billes G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A et al. 2004. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85: 26302637.
  • Giambelluca TW, Martin RE, Asner GP, Huang M, Mudd RG, Nullet MA, Delay JK, Foote D. 2009. Evapotranspiration and energy balance of native wet montane cloud forest in Hawai’i. Agricultural and Forest Meteorology 149: 230243.
  • Gillespie TW, Brock J, Wright CW. 2004. Prospects for quantifying structure, floristic composition and species richness of tropical forests. International Journal of Remote Sensing 25: 707715.
  • Gitay H, Nobel IR. 1997. What are functional types and how should we seek them? In: Smith TM, Shugart HH, Woodward FI, eds. Plant functional types. Their relevance to ecosystem properties and global change. International Geosphere–Biosphere Programme Book Series 1. New York, NY, USA: Cambridge University Press, 319.
  • Gitelson AA, Keydan GP, Merzlyak MN. 2006. Three-band model for non-invasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophysical Research Letters 33: L11402.
  • Gitelson AA, Viña A, Rundquist DC, Ciganda V, Arkebauer TJ. 2005. Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters 32: L08403.
  • Givnish TJ, ed. 1986. On the economy of plant form and function. Cambridge, UK: Cambridge University Press.
  • Goward SN, Tucker CJ, Dye DG. 1985. North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer. Vegetation 64: 314.
  • Greenberg JA, Dobrowski SZ, Ustin SL. 2005. Shadow allometry: estimating tree structural parameters using hyperspatial image analysis. Remote Sensing of Environment 97: 1525.
  • Grime JP. 1998. Benefits of plant diversity to ecosystems: immediate filter and founder effects. Journal of Ecology 86: 9902910.
  • Grime JP. 2001. Plant strategies, vegetation processes and ecosystem properties, 2nd edn. Chichester, UK: John Wiley.
  • Grossman YL, Ustin SL, Sanderson E, Jacquemoud S, Schmuck G, Verdebout J. 1996. Critique of stepwise multiple linear regression for the extraction of leaf biochemistry information from leaf reflectance data. Remote Sensing of Environment 56: 182193.
  • Guanter L, Alonso L, Moreno J. 2005. First results from the PROBA/CHRIS hyperspectral/multiangular satellite system over land and water targets. IEEE Geoscience and Remote Sensing Letters 2: 250254.
  • Hall FG, Hilker T, Coops NC, Lyapustin A, Huemmrich KF, Middleton EM, Drolet GG, Margolis A, Black TA. 2008. Multi-angle remote sensing of forest light use efficiency by observing PRI variation with canopy shadow fraction. Remote Sensing of Environment 112: 32013211.
  • Hamada Y, Stow DA, Coulter LL, Jafolla JC, Hendricks LW. 2007. Detecting Tamarisk species (Tamarix spp.) in riparian habitats of Southern California using high spatial resolution hyperspectral imagery. Remote Sensing of Environment 109: 237248.
  • Hestir EL, Khanna S, Andrew ME, Santos MJ, Viers JH, Greenberg JA, Rajapakse SS, Ustin SL. 2008. Identification of invasive vegetation using hyperspectral remote sensing in the California Delta ecosystem. Remote Sensing of Environment 112: 40344047.
  • Hilker T, Coops NC, Hall FG, Black TA, Chen B, Krishnan P, Wulder MA, Sellers PJ, Middleton EM, Huemmrich KF. 2008. A modeling approach for upscaling gross ecosystem production to the landscape scale using remote sensing data. Journal of Geophysical Research-Biogeosciences 113: G03006.
  • Hill RA, Thomson AG. 2005. Mapping woodland species composition and structure using airborne spectral and LiDAR data. International Journal of Remote Sensing 26: 37633779.
  • Holdridge LR. 1947. Determination of world plant formations from simple climatic data. Science 105: 367368.
  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S et al. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75: 335.
  • Hooper DU, Vitousek PM. 1997. The effects of plant composition and diversity on ecosystem processes. Science 277: 13021305.
  • Horn HS. 1971. The adaptive geometry of trees. Princeton, NJ, USA: Princeton University Press.
  • Horn HS. 1975. Forest succession. Scientific American 232: 9098.
  • Howard JL. 1992. Arctostaphylos glandulosa. Fire effects information system, US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, USA. Available at: http://www.fs.fed.us/database/feis/ [accessed on 15 February 2010].
  • Hunt ER, Daughtry CST, Kim MS, Williams AEP. 2007. Using canopy reflectance models and spectral angles to assess potential of remote sensing to detect invasive weeds. Journal of Applied Remote Sensing 1: No. 013506.
  • Hutchinson GE. 1958. Population studies – animal ecology and demography – concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22: 415427.
  • Jackson RD. 1986. Remote sensing of biotic and abiotic plant stress. Annual Review of Phytopathology 24: 265287.
  • Jacquemoud S, Baret F. 1990. PROSPECT: a model of leaf optical properties spectra. Remote Sensing of Environment 34: 7591.
  • Jacquemoud S, Ustin S. 2008. Modeling leaf optical properties. Photobiological Sciences Online. Environmental Photobiology. http://www.photobiology.info/#Environ
  • Jacquemoud S, Ustin SL, Verdebout J, Schmuck G, Andreoli G, Hosgood B. 1996. Estimating leaf biochemistry using the PROSPECT leaf optical properties model. Remote Sensing of Environment 56: 194202.
  • Jacquemoud S, Verhoef W, Baret F, Bacour C, Zarco-Tejada PJ, Asner GP, François C, Ustin SL. 2009. PROSPECT + SAIL: a review of use for vegetation characterization. Remote Sensing of Environment 113: S56S66.
  • Kokaly RF. 2001. Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration. Remote Sensing of Environment 75: 153161.
  • Kokaly RF, Clark RN. 1999. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment 67: 267287.
  • Lacaze R, Chen JM, Roujean JL, Lebanc SG. 2002. Retrieval of vegetation clumping index using hot spot signatures measured by POLDER instrument. Remote Sensing of Environment 79: 8495.
  • Lacaze R, Roujean JL. 2001. G-function and HOt SpoT (GHOST) reflectance model: an application to multi-scale airborne POLDER measurements. Remote Sensing of Environment 76: 114.
  • Lass LW, Thill DC, Shafii B, Prather TS. 2002. Detecting spotted knapweed (Centaurea maculosa) with hyperspectral remote sensing technology. Weed Technology 16: 426432.
  • Lavorel S, McIntyre S, Landsberg J, Forbes TDA. 1997. Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends in Ecology & Evolution 12: 474478.
  • Leboeuf A, Beaudoin A, Fournier RA, Guindon L, Luther JE, Lambert M-C. 2007. A shadow fraction method for mapping biomass of northern boreal black spruce forests using QuickBird imagery. Remote Sensing of Environment 110: 488500.
  • Lefsky MA, Cohen WB, Acker SA, Parker GG, Spies TA, Harding D. 1999. LiDAR remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests. Remote Sensing of Environment 70: 339361.
  • Lefsky MA, Harding DJ, Keller M, Cohen WB, Carabajal CC, Espirito-Santo FD, Hunter MO, de Oliveira R. 2005. Estimates of forest canopy height and aboveground biomass using ICESat. Geophysical Research Letters 32: L22S02.
  • Li XW, Strahler AH. 1986. Geometric-optical bidirectional reflectance modeling of a conifer forest canopy. IEEE Transactions on Geoscience and Remote Sensing 24: 906919.
  • Lichtenthaler HK, Buschmann C, Döll M, Fietz H-J, Bach T, Kozel U, Meier D, Rahmsdorf U. 1981. Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynthesis Research 2: 115141.
  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B et al. 2001. Ecology – biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294: 804808.
  • Lucas KL, Carter GA. 2008. The use of hyperspectral remote sensing to assess vascular plant species richness on Horn Island, Mississippi. Remote Sensing of Environment 112: 39083915.
  • Marshall E. 1993. Fitting planet Earth into a user-friendly data base. Science 261: 846848.
  • McMurray NE. 1990. Adenostoma fasciculatum. Fire effects information system, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. Available at: http://www.fs.fed.us/database/feis/ [accessed on 15 February 2010].
  • Michener WK, Brunt JW, eds. 2000. Ecological data: design, management, and processing. Oxford, UK: Blackwell Sciences Ltd.
  • Middleton EM, Cheng Y-B, Hilker T, Black TA, Krishnan P, Coops NC, Huemmrich KF. 2009. Linking foliage spectral responses to canopy-level ecosystem photosynthetic light-use efficiency at a Douglas-fir forest in Canada. Canadian Journal of Remote Sensing 35: 166188.
  • Mooney HA, Gulmon SL. 1979. Environmental and evolutionary constraints on photosynthetic characteristics of higher plants. In: Solbrig OT, Jain S, Johnson GB, Raven PH, eds. Topics in plant population biology. New York, NY, USA: Columbia University Press, 316337.
  • Mundt JT, Glenn NF, Weber KT, Prather TS, Lass LW, Pettingill J. 2005. Discrimination of hoary cress and determination of its detection limits via hyperspectral image processing and accuracy assessment techniques. Remote Sensing of Environment 96: 509517.
  • Narumalani S, Mishra DR, Wilson R, Reece P, Kohler A. 2009. Detecting and mapping four invasive species along the floodplain of North Platte River, Nebraska. Weed Technology 23: 99107.
  • National Research Council of the National Academies. 2008. Earth observations from space: the first 50 years of scientific achievements. Committee on Scientific Accomplishments of Earth Observations from Space. Board on Atmospheric Sciences and Climate Division on Earth and Life Studies. Washington, DC, USA: The National Academies Press, 144.
  • Nelson R, Parker G, Hom M. 2003. A portable airborne laser system for forest inventory. Photogrammetric Engineering and Remote Sensing 69: 267273.
  • Noujdina NV, Ustin SL. 2008. Mapping downy brome (Bromus tectorum) using multidate AVIRIS data. Weed Science 56: 173179.
  • NSF. 2010. National Science Foundation’s Cyberinfrastructure A Special Report. 2010. (http://www.nsf.gov/news/special_reports/cyber/index.jsp) online February 28, 2010.
  • Okin GS, Roberts DA, Murray B, Okin WJ. 2001. Practical limits on hyperspectral vegetation discrimination in arid and semiarid environments. Remote Sensing of Environment 77: 212225.
  • Ollinger SV, Richardson AD, Martin ME, Hollinger DY, Frolking SE, Reich PB, Plourde LC, Katul GG, Munger JW, Oren R et al. 2008. Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: functional relations and potential climate feedbacks. Proceedings of the National Academy of Sciences, USA 105: 1933619341.
  • Ollinger SV, Smith M-L. 2005. Net primary production and canopy nitrogen in a temperate forest landscape: an analysis using imaging spectroscopy, modeling and field data. Ecosystems 8: 760778.
  • Olson JS, Watts JA, Allison LJ. 1983. Carbon in live vegetation of major world ecosystems. Oak Ridge, TN, USA: Oak Ridge National Laboratory. DOE Technical Report. ORNL 5862.
  • Omasa K, Qiu GY, Watanuki K, Yoshimi K, Akiyama Y. 2003. Accurate estimation of forest carbon stocks by 3-D remote sensing of individual trees. Environmental Science & Technology 37: 11981201.
  • Pacala S, Kinzig AP. 2002. Introduction to theory and the common ecosystem model. In: Kinzig AP, Pacala S, Tilman D, eds. The functional consequences of biodiversity. empirical progress and theoretical extensions. Monographs in population biology. 33: 169174.
  • Patenaude G, Hill RA, Milne R, Gaveau DLA, Briggs BBJ, Dawson TP. 2004. Quantifying forest above ground carbon content using LiDAR remote sensing. Remote Sensing of Environment 93: 368380.
  • Pearcy RW, Ehleringer J. 1984. Comparative ecophysiology of C3 and C4 plants. Plant, Cell & Environment 7: 113.
  • Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R. 2009. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist 182: 565588.
  • Popescu SC. 2007. Estimating biomass of individual pine trees using airborne LiDAR. Biomass and Bioenergy 31: 646655.
  • Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM. 1992. A global biome model based on physiological ecology and dominance, soil properties, and climate. Journal of Biogeography 19: 117134.
  • Price JC. 1994. How unique are spectral signatures? Remote Sensing of Environment 49: 181186.
  • Rahman AF, Gamon JA, Fuentes DA, Roberts DA, Prentiss D. 2001. Modeling spatially distributed ecosystem flux of boreal forest using hyperspectral indices from AVIRIS imagery. Journal of Geophysical Research-Atmospheres 106(D24): 3357933591.
  • Ramsey E, Rangoonwala A, Nelson G, Ehrlich R, Martella K. 2005. Generation and validation of characteristic spectra from EO1 Hyperion image data for detecting the occurrence of the invasive species, Chinese tallow. International Journal of Remote Sensing 26: 16111636.
  • Raunkiaer C. 1934. The life forms of plants and statistical plant geography. In: Gilbert-Carter H, ed. Oxford, UK: Clarendon Press.
  • Reich PB, Ellsworth DS, Walters MB. 1998. Leaf structure (specific leaf area) modulates photosynthesis–nitrogen relations: evidence from within and across species and functional groups. Functional Ecology 12: 948958.
  • Riaño D, Chuvieco E, Condés S, González-Matesanz J, Ustin SL. 2004a. Generation of crown bulk density for Pinus sylvestris L. from LiDAR. Remote Sensing of Environment 92: 345352.
  • Riaño D, Chuvieco E, Ustin SL, Salas FJ, Rodríguez-Pérez JR, Ribeiro LM, Viegas DX, Moreno JM, Fernández H. 2007. Estimation of shrub height for fuel type mapping combining airborne LiDAR and simultaneous colour infrared images. International Journal of Wildland Fire 16: 341348.
  • Riaño D, Meier E, Allgöwer B, Chuvieco E, Ustin SL. 2003. Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling. Remote Sensing of Environment 86: 177186.
  • Riaño D, Valladares F, Condés S, Chuvieco E. 2004b. Estimation of leaf area index and covered ground from airborne laser scanner (LiDAR) in two contrasting forests. Agricultural and Forest Meteorology 124: 269275.
  • Richardson AJ, Wiegand CL, Gausman HQ, Cuellar JA, Gerbermann AH. 1975. Plant, soil, and shadow reflectance components of row crops. Photogrammetric Engineering and Remote Sensing 41: 14011407.
  • Roberts DA, Green RO, Adams JB. 1997. Temporal and spatial patterns in vegetation and atmospheric properties from AVIRIS. Remote Sensing of Environment 62: 223240.
  • Roberts DA, Ustin SL, Ogunjemiyo S, Greenberg J, Dobrowski SZ, Chen JQ, Hinckley TM. 2004. Spectral and structural measures of northwest forest vegetation at leaf to landscape scales. Ecosystems 7: 545562.
  • Root RB. 1967. The niche exploitation pattern of the bluegrey gnatcatcher. Ecological Monographs 37: 317350.
  • Sadro S, Gastil-Buhl M, Melack J. 2007. Characterizing patterns of plant distribution in a Southern California salt marsh using remotely sensed topographic and hyperspectral data and local tidal fluctuations. Remote Sensing of Environment 110: 226239.
  • Sage RF, Wedin DA, Li M. 1999. The biogeography of C4 photosynthesis: patterns and controlling factors. In: Sage RF, Monson RK, eds. C4 plant biology. San Diego, CA, USA: Academic Press, 351384.
  • Sánchez-Azofeifa G, Castro K, Wright SJ, Gamon J, Rivard B, Kalacska M, Rivard B, Schnitzer S, Feng JL. 2009. Differences in leaf traits, leaf internal structure, and spectral reflectance between two communities of lianas and trees: implications for remote sensing in tropical environments. Remote Sensing of Environment 113: 20762088.
  • Santos MJ, Khanna S, Hestir EL, Andrew ME, Rajapakse SS, Greenberg JA, Anderson LWJ, Ustin SL. 2010. Use of hyperspectral remote sensing to evaluate efficacy of aquatic plant management. Invasive Plant Science and Management, in press.
  • Schaepman ME, Ustin SL, Plaza AJ, Painter TH, Verrelst J, Liang S. 2009. Earth system science related imaging spectroscopy – an assessment. Remote Sensing of Environment 13: S123S137.
  • Schimper AFW. 1903. Plant geography upon a physiological basis. Oxford, UK: Clarendon Press, English translation by WR Fisher from German edn. 1898.
  • Schlesinger WH, Gill DS. 1978. Demographic studies of the chaparral shrub, Ceanothus megacarpus, in the Santa Ynez Mountains, Calif. Ecology 59: 12561263.
  • Sellers P, Hall F, Ranson KJ, Margolis H, Kelly B, Baldocchi D, den Hartog G, Josef Cihlar J, Ryan MG, Goodison B et al. 1995. The boreal ecosystem–atmosphere study (BOREAS): an overview and early results from the 1994 field year. Bulletin of the American Meteorological Society 76: 15491577.
  • Serrano L, Ustin SL, Roberts DA, Gamon JA, Penuelas J. 2000. Deriving water content of chaparral vegetation from AVIRIS data. Remote Sensing of Environment 74: 570581.
  • Shaver GR, Street LE, Rastetter EB, VanWijk MT, Williams M. 2007. Functional convergence in regulation of net CO2 flux in heterogeneous tundra landscapes in Alaska and Sweden. Journal of Ecology 95: 802817.
  • Shugart HH. 1997. Plant ecosystem functional types. In: Smith TM, Shugart HH, Woodward FIW, eds. Plant functional types. Their relevance to ecosystem properties and global change. International Geosphere–Biosphere Programme Book Series 1. Cambridge, UK: Cambridge University Press, 2047.
  • Sims DA, Gamon JA. 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment 81: 337354.
  • Sims DA, Gamon JA. 2003. Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: a comparison of indices based on liquid water and chlorophyll absorption features. Remote Sensing of Environment 84: 526537.
  • Sims DA, Luo H, Hastings S, Oechel WC, Rahman AF, Gamon JA. 2006. Parallel adjustments in vegetation greenness and ecosystem CO2 exchange in response to drought in a Southern California chaparral ecosystem. Remote Sensing of Environment 103: 289303.
  • Smith TM, Shugart HH, Woodward FI, eds. 1997. Plant functional types: their relevance to ecosystem properties and global change. Cambridge, UK: Cambridge University Press, 369.
  • Smith MO, Ustin SL, Adams JB, Gillespie AR. 1990a. Vegetation in deserts I. A regional measure of abundances from multispectral images. Remote Sensing of Environment 29: 126.
  • Smith MO, Ustin SL, Adams JB, Gillespie AR. 1990b. Vegetation in deserts II. Environmental influences on regional abundance. Remote Sensing of Environment 29: 2752.
  • Su L, Chopping MJ, Rango A, Martonchik JV, Peters DPC. 2007. Differentiation of semi-arid vegetation types based on multi-angular observations from MISR and MODIS. International Journal of Remote Sensing 28: 14191424.
  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E. 1997. The influence of functional diversity and composition on ecosystem processes. Science 277: 13001302.
  • Trombetti M, Riaño D, Rubio MA, Cheng YB, Ustin SL. 2007. Multi-temporal vegetation canopy water content retrieval and interpretation using artificial neural networks for the continental USA. Remote Sensing of Environment 12: 204215.
  • Tucker CJ, Townshend JRG, Goff TE. 1985. African land-cover classification using satellite data. Science 227: 369375.
  • Underwood EC, Mulitsch MJ, Greenberg JA, Whiting ML, Ustin SL, Kefauver SC. 2006. Mapping invasive aquatic vegetation in the Sacramento–San Joaquin Delta using hyperspectral imagery. Ecological Monitoring and Assessment 121: 4764.
  • Underwood EC, Ustin S, DiPietro D. 2003. Mapping nonnative plants using hyperspectral imagery. Remote Sensing of Environment 86: 150161.
  • Underwood EC, Ustin SL, Ramirez C. 2007. A comparison of spatial and spectral image resolution for mapping invasive plants in coastal California. Ecological Management 39: 6383.
  • Urban DL, O’Neill RV, Shugart HH Jr. 1987. Landscape ecology. BioScience 37: 119127.
  • Ustin SL, Adams JB, Elvidge CD, Rejmanek M, Rock BN, Smith MO, Thomas RW, Woodward RA. 1986. Thematic mapper studies of semiarid shrub communities. BioScience 36: 446452.
  • Ustin SL, Gitelson AA, Jacquemoud S, Schaepman M, Asner GP, Gamon JA, Zarco-Tejada P. 2009. Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sensing of Environment 113: S67S77.
  • Ustin SL, Roberts DA, Gamon JA, Asner GP, Green RO. 2004. Using imaging spectroscopy to study ecosystem processes and properties. BioScience 54: 523534.
  • Ustin SL, Roberts DA, Hart QJ. 1998a. Seasonal vegetation patterns in a California coastal savanna derived from Advanced Visible/Infrared Imaging Spectrometer (AVIRIS) Data. In: Elvidge CD, Lunetta R, eds. Remote sensing change detection: environmental monitoring applications and methods. Ann Arbor, MI, USA: Ann Arbor Press, 163180. + color plate.
  • Ustin SL, Roberts DA, Jacquemoud S, Pinzon J, Gardner M, Scheer G, Castaneda CM, Palacios A. 1998b. Estimating canopy water content of chaparral shrubs using optical methods. Remote Sensing of Environment 65: 280291.
  • Ustin SL, Xiao QF. 2001. Mapping successional boreal forests in interior central Alaska. International Journal of Remote Sensing 22: 17791797.
  • Verhoef W. 1984. Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sensing of Environment 16: 125141.
  • Vierling KT, Vierling LA, Gould WA, Martinuzzi S, Clawges RM. 2008. Lidar: shedding light on habitat characterization and modeling. Frontiers in Ecology and the Environment 6: 9098.
  • von Humboldt A. 1807. Ideen zu einer Geographic der Pflanzen nebst einem Naturgemälde der Tropenländer. Bey F.G. Cotta, Tübingen, FRG.
  • von Humboldt A. 1849. Aspects of nature in different lands and different climates, with scientific elucidations. Translation Mrs. Sabine, 3rd edn. London, UK: Longman, Brown, Green and Longman, 227246.
  • Walter H. 1931. Die Hydratur der Pflanzen und ihre physiologisch-ökologische Bedeutung. Jena, Germany: Gustav-Fisher-Verlag.
  • Walter H. 1973. Vegetation of the earth: in relation to climate and the eco-physiological conditions/Heinrich Walter. Transl. from the 2nd rev. German, Joy Wieser, ed. London, UK: English Universities Press, 237.
  • Walter H. 1979. Vegetation of the Earth and ecological systems of the geobiosphere. Transl from the 3rd rev. German, Joy Wieser, ed. New York, NY, USA: Springer-Verlag.
  • Warming E. 1909. Oecology of plants: an introduction to the study of plant communities. English translation of Lehrbuch der ökologishen Pflanzengeogrphie; eine Einführing in die Kenntniss der Pflanzenvereine). Berlin, Germany: gebriider Borntraeger, 1896.
  • Wessman CA. 1990. Evaluation of canopy biochemistry. In: Hobbs RJ, Mooney HA, eds. Remote sensing of biosphere functioning. New York, NY, USA: Springer-Verlag, 135156.
  • West GB, Brown JH, Enquist BJ. 1997. A general model for the origin of allometric scaling laws in biology. Science 276: 122126.
  • Westby M, Leishman M. 1997. Categorizing plant species into functional types. In: Smith TM, Shugart HH, Woodward FI, eds. Plant functional types: their relevance to ecosystem properties and global change. Cambridge, UK: Cambridge University Press, 104121.
  • Westoby M. 1998. A leaf–height–seed (LHS) plant ecology strategy scheme. Plant and Soil 199: 213227.
  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ. 2002. Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics 33: 125159.
  • Whittaker RH. 1956. Vegetation of the Great Smoky Mountains. Ecological Monographs 26: 180.
  • Whittaker RH. 1962. Classification of natural communities. The Botanical Review 28: 1237.
  • Whittaker RH. 1975. Communities and ecosystems. New York, NY, USA: MacMillan.
  • Wiens JA. 1976. Population responses to patchy environments. Annual Review of Ecology and Systematics 7: 81120.
  • Williams AP, Hunt ER. 2002. Estimation of leafy spurge cover from hyperspectral imagery using mixture tuned matched filtering. Remote Sensing of Environment 82: 446456.
  • Woodcock CE, Strahler AH. 1987. The factor of scale in remote-sensing. Remote Sensing of Environment 21: 311332.
  • Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinemets Ü, Oleksyn J et al. 2005. Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography 14: 411421.
  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M et al. 2004. The worldwide leaf economics spectrum. Nature 428: 821827.
  • Xiao Q, Ustin SL, McPerson EG. 2004. Using AVIRIS data and multiple-masking techniques to map urban forest tree species. International Journal of Remote Sensing 25: 56375654.
  • Zomer RJ, Trabucco A, Ustin SL. 2009. Building spectral libraries for wetlands land cover classification and hyperspectral remote sensing. Journal of Environmental Management 90: 21702177.
  • Zutta B. 2003. Assessing vegetation functional type and biodiversity in Southern California using spectral reflectance. MS thesis, California State University, Los Angeles, CA, USA.
  • Zygielbaum AI, Anatoly A, Gitelson AA, Arkebauer TJ, Rundquist DC. 2009. Non-destructive detection of water stress and estimation of relative water content in maize. Geophysical Research Letters 36: L12403.