SEARCH

SEARCH BY CITATION

References

  • Baxter I. 2009. Ionomics: studying the social network of mineral nutrients. Current Opinion in Plant Biology 12: 381386.
  • Becher M, Talke IN, Krall L, Kramer U. 2004. Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant Journal 37: 251268.
  • Bert V, Bonnin I, Saumitou-Laprade P, de Laguerie P, Petit D. 2002. Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytologist 155: 4757.
  • Bert V, MacNair MR, DeLaguerie P, Saumitou-Laprade P, Petit D. 2000. Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis halleri (Brassicaceae). New Phytologist 146: 225233.
  • Bert V, Meerts P, Saumitou-Laprade P, Salis P, Gruber W, Verbruggen N. 2003. Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant and Soil 249: 918.
  • Boyd RS, Martens SN. 1992. The raison d’être for metal hyperaccumulation by plants. In: BakerAJM, ProctorJ, ReevesRD, eds. The vegetation of ultramafic (serpentine) soils. Andover, UK: Intercept, 279289.
  • Broadley MR, Hammond JP, King GJ, Astley D, Bowen HC, Meacham MC, Mead A, Pink DA, Teakle GR, Hayden RM et al. 2008. Shoot calcium and magnesium concentrations differ between subtaxa, are highly heritable, and associate with potentially pleiotropic loci in Brassica oleracea. Plant Physiology 146: 17071720.
  • Courbot M, Willems G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, Verbruggen N. 2007. A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiology 144: 10521065.
  • Dechamps C, Roosens NH, Hotte C, Meerts P. 2005. Growth and mineral element composition in two ecotypes of Thlaspi caerulescens on Cd contaminated soil. Plant and Soil 273: 327335.
  • Deniau AX, Pieper B, Ten Bookum\ WM, Lindhout P, Aarts MGM, Schat H. 2006. QTL analysis of cadmium and zinc accumulation in the heavy metal hyperaccumulator Thlaspi caerulescens. Theoretical and Applied Genetics 113: 907920.
  • Falconer S, Mackay T. 1996. Introduction to quantitative genetics. Essex, UK: Benjamin Cummings.
  • Frérot H, Faucon MP, Willems G, Godé C, Courseaux A, Darracq A, Verbruggen N, Saumitou-Laprade P. 2010. Genetic architecture of zinc hyperaccumulation in Arabidopsis halleri: the essential role of QTL × environment interactions. New Phytologist doi: 10.1111/j.1469-8137.2010.03295.x
  • Frérot H, Lefebvre C, Petit C, Collin C, Dos Santos A, Escarre J. 2005. Zinc tolerance and hyperaccumulation in F1 and F2 offspring from intra and interecotype crosses of Thlaspi caerulescens. New Phytologist 165: 111119.
  • Gendre D, Czernic P, Conejero G, Pianelli K, Briat JF, Lebrun M, Mari S. 2007. TcYSL3, a member of the YSL gene family from the hyper-accumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter. Plant Journal 49: 115.
  • Guerinot ML, Salt DE. 2001. Fortified foods and phytoremediation. Two sides of the same coin. Plant Physiology 125: 164167.
  • Ha M, Lu J, Tian L, Ramachandran V, Kasschau KD, Chapman EJ, Carrington JC, Chen X, Wang XJ, Chen ZJ. 2009. Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proceedings of the National Academy of Sciences, USA 106: 1783517840.
  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Kramer U. 2008. Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453: 391395.
  • Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS. 2004. P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16: 13271339.
  • Jin Y, Clark A, Slebos R, Al-Refai H, Taylor J, Kunkel T, Resnick M, Gordenin D. 2003. Cadmium is a mutagen that acts by inhibiting mismatch repair. Nature Genetics 34: 326329.
  • Kikuchi T, Okazaki M, Motobayashi T. 2009. Suppressive effect of magnesium oxide materials on cadmium accumulation in winter wheat grain cultivated in a cadmium-contaminated paddy field under annual rice-wheat rotational cultivation. Journal of Hazardous Materials 168: 8993.
  • Kim YY, Choi H, Segami S, Cho HT, Martinoia E, Maeshima M, Lee Y. 2009. AtHMA1 contributes to the detoxification of excess Zn(II) in Arabidopsis. Plant Journal 58: 737753.
  • Klatte M, Schuler M, Wirtz M, Fink-Straube C, Hell R, Bauer P. 2009. The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiology 150: 257271.
  • Kramer U, Talke IN, Hanikenne M. 2007. Transition metal transport. FEBS Letters 581: 22632272.
  • Kupper H, Kochian LV. 2009. Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). New Phytologist 185: 114129.
  • Lin YF, Liang HM, Yang SY, Boch A, Clemens S, Chen CC, Wu JF, Huang JL, Yeh KC. 2009. Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytologist 182: 392404.
  • Macnair MR, Bert V, Huitson SB, Saumitou-Laprade P, Petit D. 1999. Zinc tolerance and hyperaccumulation are genetically independent characters. Proceedings. Biological Sciences 266: 21752179.
  • Mills RF, Francini A, da Rocha PSCF, Baccarini PJ, Aylett M, Krijger GC, Williams LE. 2005. The plant P-1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels. FEBS Letters 579: 783791.
  • Molitor M, Dechamps C, Gruber W, Meerts P. 2005. Thlaspi caerulescens on nonmetalliferous soil in Luxembourg: ecological niche and genetic variation in mineral element composition. New Phytologist 165: 503512.
  • Morel FM. 2008. The co-evolution of phytoplankton and trace element cycles in the oceans. Geobiology 6: 318324.
  • Orr HA. 1998. Testing natural selection vs. genetic drift in phenotypic evolution using quantitative trait locus data. Genetics 149: 20992104.
  • Palmgren MG, Clemens S, Williams LE, Kramer U, Borg S, Schjorring JK, Sanders D. 2008. Zinc biofortification of cereals: problems and solutions. Trends in Plant Science 13: 464473.
  • Pauwels M, Frérot H, Bonnin I, Saumitou-Laprade P. 2006. A broad-scale analysis of population differentiation for Zn tolerance in an emerging model species for tolerance study: Arabidopsis halleri (Brassicaceae). Journal of Evolutionary Biology 19: 18381850.
  • Pottosin II, Schonknecht G. 2007. Vacuolar calcium channels. Journal of Experimental Botany 58: 15591569.
  • R Development Core Team. 2009. R: A language and environment for statistical computing. http://www.R-project.org. Vienna, Austria: R Foundation for Statistical Computing.
  • Roosens NHCJ, Bernard C, Leplae R, Verbruggen N. 2004. Evidence for copper homeostasis function of metallothionein (MT3) in the hyperaccumulator Thlaspi caerulescens. FEBS Letters 577: 916.
  • Roosens NHCJ, Willems G, Gode C, Courseaux A, Saumitou-Laprade P. 2008. The use of comparative genome analysis and syntenic relationships allows extrapolating the position of Zn tolerance QTL regions from Arabidopsis halleri into Arabidopsis thaliana. Plant and Soil 306: 105116.
  • Salt DE, Baxter I, Lahner B. 2008. Ionomics and the study of the plant ionome. Annual Review of Plant Biology 59: 709733.
  • SAS Institute. 2002. SAS user's guide: statistics. Version 9.1. North Carolina, USA.
  • Talke IN, Hanikenne M, Kramer U. 2006. Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiology 142: 148167.
  • Van de Mortel J, Almar Villanueva L, Schat H, Kwekkeboom J, Coughlan S, Moerland P, Ver Loren Van Themaat E, Koornneef M, Aarts MGM. 2006. Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiology 142: 11271147.
  • Van Ooijen JW. 2009. MapQTL® 6, Software for the mapping of quantitative trait loci in experimental populations of diploid species. Wageningen, the Netherlands: Kyazma B. V.
  • Verbruggen N, Hermans C, Schat H. 2009a. Mechanisms to cope with arsenic or cadmium excess in plants. Current Opinion in Plant Biology 12: 364372.
  • Verbruggen N, Hermans C, Schat H. 2009b. Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist 181: 759776.
  • Voorrips RE. 2002. MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity 93: 7778.
  • Weber M, Harada E, Vess C, Roepenack-Lahaye E, Clemens S. 2004. Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant Journal 37: 269281.
  • Willems G, Drager DB, Courbot M, Gode C, Verbruggen N, Saumitou-Laprade P. 2007. The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp. halleri (Brassicaceae): an analysis of quantitative trait loci. Genetics 176: 659674.
  • Wong CKE, Cobbett CS. 2009. HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytologist 181: 7178.