SEARCH

SEARCH BY CITATION

Keywords:

  • bacterial wilt;
  • infection;
  • pathogenicity;
  • plant resistance;
  • symbiosis

Summary

Ralstonia solanacearum is regarded as one of the world’s most important bacterial plant pathogens because of its aggressiveness, large host range, broad geographical distribution and long persistence in soil and water environments. This root pathogen is an attractive model to investigate the question of host adaptation as it exhibits a remarkably broad host range, being able to infect numerous plant species belonging to different botanical families. Several effector proteins transiting through the type III secretion system have been shown to restrict or extend specifically the host range of the bacterium. Recent investigations on the mechanisms that coordinate changes in gene expression during the passage between saprophytism and life within host tissues have allowed the identification of other molecular determinants implicated in the adaptation of R. solanacearum to its hosts and pathogenesis. Among these determinants are genes involved in chemotaxis, secondary metabolic pathways and the detoxification of various antimicrobial compounds, and genes directing the biosynthesis of phytohormones or adherence factors. The regulation of many of these genes is coordinated by the master pathogenicity regulator HrpG. These hrpG-dependent genes control major steps during the interaction with plant cells, and probably determine the ecological behaviour of the microorganism, being required for the establishment of pathogenesis or mutualism.