SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    S. Aljazairi, C. Arias, S. Nogués, Carbon and nitrogen allocation and partitioning in traditional and modern wheat genotypes under pre-industrial and future CO2 conditions, Plant Biology, 2015, 17, 3
  2. 2
    I. Schmid, J. Franzaring, M. Müller, N. Brohon, O. C. Calvo, P. Högy, A. Fangmeier, Effects of CO2 Enrichment and Drought on Photosynthesis, Growth and Yield of an Old and a Modern Barley Cultivar, Journal of Agronomy and Crop Science, 2015, 201, 3
  3. 3
    Rowan F. Sage, Matt Stata, Photosynthetic diversity meets biodiversity: The C4 plant example, Journal of Plant Physiology, 2015, 172, 104

    CrossRef

  4. 4
    Dolores R. Piperno, Irene Holst, Klaus Winter, Owen McMillan, Teosinte before domestication: Experimental study of growth and phenotypic variability in Late Pleistocene and early Holocene environments, Quaternary International, 2015, 363, 65

    CrossRef

  5. 5
    Salvador Aljazairi, Salvador Nogués, The effects of depleted, current and elevated growth [CO2] in wheat are modulated by water availability, Environmental and Experimental Botany, 2015, 112, 55

    CrossRef

  6. 6
    Salvador Aljazairi, Claudia Arias, Elena Sánchez, Gladys Lino, Salvador Nogués, Effects of pre-industrial, current and future [CO2] in traditional and modern wheat genotypes, Journal of Plant Physiology, 2014, 171, 17, 1654

    CrossRef

  7. 7
    Katie M. Becklin, Juliana S. Medeiros, Kayla R. Sale, Joy K. Ward, Evolutionary history underlies plant physiological responses to global change since the last glacial maximum, Ecology Letters, 2014, 17, 6
  8. 8
    Shigehiro Ishizuka, Kimiyasu Kawamuro, Akihiro Imaya, Atsushi Torii, Kazuhito Morisada, Latitudinal gradient of C4 grass contribution to Black Soil organic carbon and correlation between δ13C and the melanic index in Japanese forest stands, Biogeochemistry, 2014, 118, 1-3, 339

    CrossRef

  9. 9
    H. Pinto, R. E. Sharwood, D. T. Tissue, O. Ghannoum, Photosynthesis of C3, C3-C4, and C4 grasses at glacial CO2, Journal of Experimental Botany, 2014, 65, 13, 3669

    CrossRef

  10. 10
    Bryan S. McLean, Joy K. Ward, Michael J. Polito, Steven D. Emslie, Responses of high-elevation herbaceous plant assemblages to low glacial CO2 concentrations revealed by fossil marmot (Marmota) teeth, Oecologia, 2014, 175, 4, 1117

    CrossRef

  11. 11
    Y. Li, J. Xu, N. U. Haq, H. Zhang, X.-G. Zhu, Was low CO2 a driving force of C4 evolution: Arabidopsis responses to long-term low CO2 stress, Journal of Experimental Botany, 2014, 65, 13, 3657

    CrossRef

  12. 12
    FLORIAN A. BUSCH, TAMMY L. SAGE, ASAPH B. COUSINS, ROWAN F. SAGE, C3 plants enhance rates of photosynthesis by reassimilating photorespired and respired CO2, Plant, Cell & Environment, 2013, 36, 1
  13. 13
    Flavia Vischi Winck, David Orlando Páez Melo, Andrés Fernando González Barrios, Carbon acquisition and accumulation in microalgae Chlamydomonas: Insights from “omics” approaches, Journal of Proteomics, 2013, 94, 207

    CrossRef

  14. 14
    Juliana S. Medeiros, Joy K. Ward, Increasing atmospheric [CO2] from glacial to future concentrations affects drought tolerance via impacts on leaves, xylem and their integrated function, New Phytologist, 2013, 199, 3
  15. 15
    T. J. Murray, D. T. Tissue, D. S. Ellsworth, M. Riegler, Interactive effects of pre-industrial, current and future [CO2] and temperature on an insect herbivore of Eucalyptus, Oecologia, 2013, 171, 4, 1025

    CrossRef

  16. 16
    Thomas D. Sharkey, Dennis W. Gray, Heather K. Pell, Steven R. Breneman, Lauren Topper, ISOPRENE SYNTHASE GENES FORM A MONOPHYLETIC CLADE OF ACYCLIC TERPENE SYNTHASES IN THE TPS-B TERPENE SYNTHASE FAMILY, Evolution, 2013, 67, 4
  17. 17
    A. A. Temme, W. K. Cornwell, J. H. C. Cornelissen, R. Aerts, Meta-analysis reveals profound responses of plant traits to glacial CO2 levels, Ecology and Evolution, 2013, 3, 13
  18. 18
    M. Rakotoarinivo, A. Blach-Overgaard, W. J. Baker, J. Dransfield, J. Moat, J.-C. Svenning, Palaeo-precipitation is a major determinant of palm species richness patterns across Madagascar: a tropical biodiversity hotspot, Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 1757, 20123048

    CrossRef

  19. 19
    R. F. Sage, Photorespiratory compensation: a driver for biological diversity, Plant Biology, 2013, 15, 4
  20. 20
    Peter J. Franks, Mark A. Adams, Jeffrey S. Amthor, Margaret M. Barbour, Joseph A. Berry, David S. Ellsworth, Graham D. Farquhar, Oula Ghannoum, Jon Lloyd, Nate McDowell, Richard J. Norby, David T. Tissue, Susanne Caemmerer, Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century, New Phytologist, 2013, 197, 4
  21. 21
    Christopher Rico, Jarmila Pittermann, H. Wayne Polley, Michael J. Aspinwall, Phillip A. Fay, The effect of subambient to elevated atmospheric CO2 concentration on vascular function in Helianthus annuus: implications for plant response to climate change, New Phytologist, 2013, 199, 4
  22. 22
    Henrik Hartmann, Waldemar Ziegler, Olaf Kolle, Susan Trumbore, Thirst beats hunger – declining hydration during drought prevents carbon starvation in Norway spruce saplings, New Phytologist, 2013, 200, 2
  23. 23
    Anthony P. O'Grady, Patrick J. M. Mitchell, Elizabeth A. Pinkard, David T. Tissue, Thirsty roots and hungry leaves: unravelling the roles of carbon and water dynamics in tree mortality, New Phytologist, 2013, 200, 2
  24. 24
    Biogeochemistry, 2013,

    CrossRef

  25. 25
    D.R. Taub, X. Wang, Climate Vulnerability, 2013,

    CrossRef

  26. 26
    Vladimir Sukhov, Lyubov Orlova, Sergey Mysyagin, Julia Sinitsina, Vladimir Vodeneev, Analysis of the photosynthetic response induced by variation potential in geranium, Planta, 2012, 235, 4, 703

    CrossRef

  27. 27
    David M. Nelson, Carbon isotopic composition of Ambrosia and Artemisia pollen: assessment of a C3-plant paleophysiological indicator, New Phytologist, 2012, 195, 4
  28. 28
    David J. Beerling, Lyla L. Taylor, Catherine D. C. Bradshaw, Daniel J. Lunt, Paul J. Valdes, Steven A. Banwart, Mark Pagani, Jonathan R. Leake, Ecosystem CO2 starvation and terrestrial silicate weathering: mechanisms and global-scale quantification during the late Miocene, Journal of Ecology, 2012, 100, 1
  29. 29
    Patrick J. Vogan, Rowan F. Sage, Effects of low atmospheric CO2 and elevated temperature during growth on the gas exchange responses of C3, C3–C4 intermediate, and C4 species from three evolutionary lineages of C4 photosynthesis, Oecologia, 2012, 169, 2, 341

    CrossRef

  30. 30
    A. D. B. Leakey, J. A. Lau, Evolutionary context for understanding and manipulating plant responses to past, present and future atmospheric [CO2], Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1588, 613

    CrossRef

  31. 31
    Laci M. Gerhart, John M. Harris, Jesse B. Nippert, Darren R. Sandquist, Joy K. Ward, Glacial trees from the La Brea tar pits show physiological constraints of low CO2, New Phytologist, 2012, 194, 1
  32. 32
    R. Buitenwerf, W. J. Bond, N. Stevens, W. S. W. Trollope, Increased tree densities in South African savannas: >50 years of data suggests CO2 as a driver, Global Change Biology, 2012, 18, 2
  33. 33
    David T. Tissue, James D. Lewis, Learning from the past: how low [CO2] studies inform plant and ecosystem response to future climate change, New Phytologist, 2012, 194, 1
  34. 34
    Lynn Jo Pillitteri, Keiko U. Torii, Mechanisms of Stomatal Development, Annual Review of Plant Biology, 2012, 63, 1, 591

    CrossRef

  35. 35
    P.-A. Christin, M. J. Wallace, H. Clayton, E. J. Edwards, R. T. Furbank, P. W. Hattersley, R. F. Sage, T. D. Macfarlane, M. Ludwig, Multiple photosynthetic transitions, polyploidy, and lateral gene transfer in the grass subtribe Neurachninae, Journal of Experimental Botany, 2012, 63, 17, 6297

    CrossRef

  36. 36
    Melanie J. B. Zeppel, James D. Lewis, Brian Chaszar, Renee A. Smith, Belinda E. Medlyn, Travis E. Huxman, David T. Tissue, Nocturnal stomatal conductance responses to rising [CO2], temperature and drought, New Phytologist, 2012, 193, 4
  37. 37
    Michael Y. Roleda, Jaz N. Morris, Christina M. McGraw, Catriona L. Hurd, Ocean acidification and seaweed reproduction: increased CO2 ameliorates the negative effect of lowered pH on meiospore germination in the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae), Global Change Biology, 2012, 18, 3
  38. 38
    Rowan F. Sage, Tammy L. Sage, Ferit Kocacinar, Photorespiration and the Evolution of C4Photosynthesis, Annual Review of Plant Biology, 2012, 63, 1, 19

    CrossRef

  39. 39
    Gregory J. Jordan, A critical framework for the assessment of biological palaeoproxies: predicting past climate and levels of atmospheric CO2 from fossil leaves, New Phytologist, 2011, 192, 1
  40. 40
    F. Ian Woodward, Holly Slater, Broad-spectrum plant science, New Phytologist, 2011, 189, 1
  41. 41
    H. Wayne Polley, Philip A. Fay, Virginia L. Jin, Gerald F. Combs, CO2 enrichment increases element concentrations in grass mixtures by changing species abundances, Plant Ecology, 2011, 212, 6, 945

    CrossRef