SEARCH

SEARCH BY CITATION

References

  • Ait Barka E, Nowak J, Clément C. 2006. Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Applied and Environmental Microbiology 72: 72467252.
  • Arsac JF, Lamothe C, Mulard D, Fages J. 1990. Growth enhancement of maize (Zea mays L.) through Azospirillum lipoferum inoculation: effect of plant genotype and bacterial concentration. Agronomie 10: 649654.
  • Baricevic D, Umek A, Kreft S, Maticic B, Zupancic A. 1999. Effect of water stress and nitrogen fertilization on the content of hyoscyamine and scopolamine in the roots of deadly nightshade (Atropa belladonna). Environmental and Experimental Botany 42: 1724.
  • Bashan Y, Bustillos JJ, Leyva LA, Hernandez JP, Bacilio M. 2006. Increase in auxiliary photoprotective photosynthetic pigments in wheat seedlings induced by Azospirillum brasilense. Biology and Fertility of Soils 42: 279285.
  • Bashan Y, Holguin G, de-Bashan LE. 2004. Azospirillum–plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Canadian Journal of Microbiology 50: 521577.
  • Baudoin E, Lerner A, Mirza MS, El Zemrany H, Prigent-Combaret C, Jurkevich E, Spaepen S, Vanderleyden J, Nazaret S, Okon Y et al. 2010. Effects of Azopirillum brasilense with genetically modified auxin biosynthesis gene ipdC upon the diversity of the indigenous microbiota of the wheat rhizosphere. Research in Microbiology 161: 219226.
  • Çakmakç R, Erat M, Erdoğan Ü, Figen Dönmez M. 2007. The influence of plant growth-promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. Journal of Plant Nutrition and Soil Science 170: 288295.
  • Cambier V, Hance T, de Hoffmann E. 2000. Variation of DIMBOA and related compounds content in relation to the age and plant organ in maize. Phytochemistry 53: 223229.
  • Cañas RA, Quilleré I, Christ A, Hirel C. 2009. Nitrogen metabolism in the developing ear of maize (Zea mays): analysis of two lines contrasting in their mode of nitrogen management. New Phytologist 184: 340352.
  • Cartieaux F, Thibaud MC, Zimmerli L, Lessard P, Sarrobert C, David P, Gerbaud A, Robaglia C, Somerville S, Nussaume L. 2003. Transcriptome analysis of Arabidopsis colonized by a plant-growth promoting rhizobacterium reveals a general effect on disease resistance. Plant Journal 36: 177188.
  • Cassán F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V. 2009. Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). European Journal of Soil Biology 45: 2835.
  • Cheng Z, McConkey BJ, Glick BR. 2010. Proteomic studies of plant–bacterial interactions. Soil Biology and Biochemistry 42: 16731684.
  • Corcuera LJ, Woodward MD, Helgeson JP, Kelman A, Upper CD. 1978. 2,4-Dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one, an inhibitor from Zea mays with differential activity against soft rotting Erwinia species. Plant Physiology 61: 791795.
  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre JF, Kapulnik Y et al. 2001. Responses of agronomically important crops to inoculation with Azospirillum. Australian Journal of Plant Physiology 28: 871879.
  • Dobbelaere S, Vanderleyden J, Okon Y. 2003. Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical Review of Plant Science 22: 107149.
  • El Zemrany H, Cortet J, Lutz MP, Chabert A, Baudouin E, Haurat J, Maughan N, Felix D, Défago G, Bally R et al. 2006. Field survival of the phytostimulatory Azospirillum lipoferum CRT1 and functional impact on maize crop, biodegradation of crop residues, and soil faunal indicators in a context of decreasing nitrogen fertilisation. Soil Biology & Biochemistry 38: 17121727.
  • Eljarrat E, Barcelo D. 2001. Sample handling and analysis of allelochemical compounds in plants. Trends in Analytical Chemistry 20: 584590.
  • Fages J, Mulard D. 1988. Isolement de bactéries rhizosphériques et effet de leur inoculation en pot chez Zea mays. Agronomie 8: 309314.
  • Fallik E, Okon Y, Fisher M. 1988. Growth response of maize roots to Azospirillum inoculation: effect of soil organic matter, number of rhizosphere bacteria and timing of inoculation. Soil Biology & Biochemistry 20: 4549.
  • Fallik E, Sarig S, Okon Y. 1994. Morphology and physiology of plant roots associated with Azospirillum. In: OkonY, ed. Azospirillum/plant associations. Boca Raton, FL, USA: CRC Press, 7785.
  • Frey M, Schullehner K, Dick R, Fiesselmann A, Gierl A. 2009. Benzoxazinoid biosynthesis, a model for evolution of secondary metabolic pathways in plants. Phytochemistry 70: 16451651.
  • Fulchieri M, Lucangeli C, Bottini R. 1993. Inoculation with Azospirillum lipoferum affects growth and gibberellin status of corn seedling roots. Plant and Cell Physiology 34: 13051309.
  • Gahagan HE, Mumma RO. 1967. The isolation of 2-(2-hydroxy-7-methoxy-1,4-benzoxazin-3-one)β-D-glucopyranoside from Zea mays. Phytochemistry 6: 14411448.
  • Gruhnert C, Biehl B, Selmar D. 1994. Compartimentation of cyanogenic glucosides and their degrading enzymes. Planta 195: 3642.
  • Hartman T. 2007. From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68: 28312846.
  • Hasegawa K, Togo S, Urashima M, Mizutani J, Kosemura S, Yamamura S. 1992. An auxin-inhibiting substance from light-grown maize shoots. Phytochemistry 31: 36733676.
  • Jacoud C, Faure D, Wadoux P, Bally R. 1998. Development of a strain-specific probe to follow inoculated Azospirillum lipoferum CRT1 under field conditions and enhancement of maize root development by inoculation. FEMS Microbiology Ecology 27: 4351.
  • Jacoud C, Job D, Wadoux P, Bally R. 1999. Initiation of root growth stimulation by Azospirillum lipoferum CRT1 during maize seed germination. Canadian Journal of Microbiology 45: 339342.
  • Jain DK, Patriquin DG. 1984. Root hair deformation, bacterial attachment, and plant growth in wheat–Azospirillum associations. Applied and Environmental Microbiology 48: 12081213.
  • Jeong GT, Woo JC, Park DH. 2007. Effect of plant growth regulators on growth and biosynthesis of phenolic compounds in genetically transformed hairy roots of Panax ginseng C. A. Meyer. Biotechnology and Bioprocess Engineering 12: 8691.
  • Jonczyk R, Schmidt H, Osterrieder A, Fiesselmann A, Schullehner K, Haselbeck M, Sicker D, Hofmann D, Yalpani N, Simmons C et al. 2008. Elucidation of the final reactions of DIMBOA-glucoside biosynthesis in maize: characterisation of Bx6 and Bx7. Plant Physiology 146: 10531063.
  • Kato-Noguchi H, Macías FA. 2006. Possible mechanism of inhibition of 6-methoxy-benzoxazolin-2(3H)-one on germination of cress (Lepidium sativum L.). Journal of Chemical Ecology 32: 11011109.
  • Klun JA, Robinson JF. 1969. Concentration of two 1,4-benzoxazinones in dent corn at various stages of development of the plant and its relation to resistance of the host plant to the European corn borer. Journal of Economical Entomology 62: 214220.
  • Klun JA, Tipton CL, Robinson JF, Osterm DL, Beroza M. 1970. Isolation and identification of 6,7-dimethoxy-2-benzoxazolinone from dried tissues of Zea mays (L.) and evidence of its cyclic hydroxamic acid precursor. Journal of Agricultural and Food Chemistry 18: 663665.
  • Lambers H, Mougel C, Jaillard B, Hinsinger P. 2009. Plant–microbe–soil interactions in the rhizosphere: an evolutionary perspective. Plant and Soil 321: 83115.
  • Leighton V, Niemeyer HM, Jonson LMV. 1994. Substrate specificity of a glucosyltransferase and an N-hydroxylase involved in the biosynthesis of cyclic hydroxamic acids in Gramineae. Phytochemistry 36: 887892.
  • Leszczynski B, Dixon AFG. 1990. Resistance of cereals to aphids: interaction between hydroxamic acids and the aphid Sitobion avenae (Homoptera: Aphididae). Annals of Applied Biology 119: 2130.
  • Manuwoto S, Scriber JM. 1985. Consumption and utilization of experimentally altered corn by southern armyworm: iron, nitrogen, and cyclic hydroxamates. Journal of Chemical Ecology 11: 14691483.
  • Miché L, Battistoni F, Gemmer S, Belghazi M, Reinhold-Hurek B. 2006. Upregulation of jasmonate-inducible defense proteins and differential colonization of roots of Oryza sativa cultivars with the endophyte Azoarcus sp. Molecular Plant–Microbe Interactions 19: 502511.
  • Morant AV, Jørgensen K, Jørgensen J, Paquette SM, Sánchez-Pérez R, Møller BL, Bak S. 2008. β-Glucosidases as detonators of plant chemical defense. Phytochemistry 69: 17951813.
  • Nagao T, Otsuka H, Kohda H, Sato T, Yamasaki K. 1985. Benzoxazinones from Coix lachrymal-jobi var. Ma-yuen. Phytochemistry 12: 29592962.
  • Nelson LM, Knowles R. 1978. Effect of oxygen and nitrate on nitrogen fixation and denitrification by Azospirillum brasilense grown in continuous culture. Canadian Journal of Microbiology 24: 13951403.
  • Nicol D, Copaja SV, Wratten SD, Niemeyer HM. 1992. A screen of worldwide wheat cultivars for hydroxamic acid levels and aphid antixenosis. Annals of Applied Biology 121: 1118.
  • Oikawa A, Ishihara A, Tanaka C, Mori N, Tsuda M, Iwamura H. 2004. Accumulation of HDMBOA-Glc is induced by biotic stresses prior to the release of MBOA in maize leaves. Phytochemistry 65: 29953001.
  • Park WJ, Schäfer A, Prinsen E, van Onckelen H, Kang BG, Hertel R. 2001. Auxin-induced elongation by 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one. Planta 213: 92100.
  • Pérez FJ. 1990. Allelopathic effect of hydroxamic acids from cereals on Avena sativa and Avena fatua. Phytochemistry 29: 773776.
  • Pothier JF, Wisniewski-Dyé F, Weiss-Gayet M, Moënne-Loccoz Y, Prigent-Combaret C. 2007. Promoter-trap identification of wheat seed extract-induced genes in the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp245. Microbiology 153: 36083622.
  • Pratt K, Kumar P, Chilton WS. 1995. Cyclic hydroxamic acids in dicotyledonous plants. Biochemical Systematics and Ecology 23: 781785.
  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y. 2009. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil 321: 341361.
  • Raja P, Uma S, Gopal G, Govindarajan K. 2006. Impact of bio inoculants consortium on rice root exudates, biological nitrogen fixation and plant growth. Journal of Biological Sciences 6: 815823.
  • Remans R, Beebe S, Blair M, Manrique G, Tovar E, Rao I, Croonenborghs A, Torres-Gutierrez R, El-Howeity M, Michiels J et al. 2008. Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.). Plant and Soil 302: 149161.
  • Ribaudo CM, Rondanini DP, Curá JA, Fraschina AA. 2001. Response of Zea mays to the inoculation with Azospirillum on nitrogen metabolism under greenhouse conditions. Biologia Plantarum 44: 631634.
  • Richardson A, Barea JM, McNeill A, Prigent-Combaret C. 2009. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil 321: 305339.
  • Rout G. 2006. Effect of auxins on adventitious root development from single node cuttings of Camellia sinensis (L.) Kuntze and associated biochemical changes. Plant Growth Regulation 48: 111117.
  • Sahi SV, Chilton MD, Chilton WS. 1990. Corn metabolites affect growth and virulence of Agrobacterium tumefaciens. Proceedings of the National Academy of Sciences, USA 87: 38793883.
  • Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press.
  • Sanguin H, Remenant B, Dechesne A, Thioulouse J, Vogel TM, Nesme X, Moënne-Loccoz Y, Grundmann GL. 2006. Potential of a 16S rRNA-based taxonomic microarray for analyzing the rhizosphere effects of maize on Agrobacterium spp. and bacterial communities. Applied and Environmental Microbiology 72: 43024312.
  • Singh UP, Sarma BK, Singh DP. 2003. Effect of plant growth-promoting rhizobacteria and culture filtrate of Sclerotium rolfsii on phenolic and salicylic acid contents in chickpea (Cicer arietinum). Current Microbiology 46: 131140.
  • Tang CS, Chang SH, Hoo D, Yanagihara KH. 1975. Gas chromatographic determination of 2(3)-benzoxazolinones from cearal plants. Phytochemistry 14: 20772079.
  • Tipton CL, Klun JA, Husted RR, Pierson MD. 1960. Cyclic hydroxamic acids and related compounds from maize. Isolation and characterization. Biochemistry 6: 28662868.
  • Venis MA, Watson PJ. 1978. Naturally occurring modifiers of auxin-receptor interaction in corn: identification as benzoxazolinones. Planta 142: 103107.
  • Verhagen BWM, Glazebrook J, Zhu T, Chang HS, van Loon LC, Pieterse CMJ. 2004. The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Molecular Plant-Microbe Interactions 17: 895908.
  • Villagrasa M, Guillamón M, Eljarrat E, Barceló D. 2006. Determination of benzoxazinone derivatives in plant by combining pressurized liquid extraction-solid-phase extraction followed by liquid chromatography-electrospray mass spectrometry. Journal of Agricultural and Food Chemistry 54: 10011008.
  • Volpin H, Burdman S, Castro-Sowinski S, Kapulnik T, Okon Y. 1996. Inoculation with Azospirillum increased exudation of rhizobial nod-gene inducers by alfalfa roots. Molecular Plant–Microbe Interactions 9: 388394.
  • Wahlroos O, Virtanen AI. 1959. The precursors of 6-methoxybenzoxazolinone in maize and wheat plants, their isolation and some of their properties. Acta Chemica Scandinavica 13: 19061908.
  • Wang Y, Ohara Y, Nakayashiki H, Tosa Y, Mayama S. 2005. Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Molecular Plant–Microbe Interactions 18: 385396.
  • Wilkes MA, Marshall DR, Copeland L. 1999. Hydroxamic acids in cereal roots inhibit the growth of take-all. Soil Biology & Biochemistry 31: 18311836.