SEARCH

SEARCH BY CITATION

References

  • Alkhalfioui F, Renard M, Frendo P, Keichinger C, Myer Y, Gelhaye E, Hirasawa M, Knaff DB, Ritzenhaler C, Montrichard F. 2008. A novel type of thioredoxin dedicated to symbiosis in legumes. Plant Physiology 148: 424435.
  • Arrigoni O, De Tullio MC. 2002. Ascorbic acid: much more than just an antioxidant. Biochimica et Biophysica Acta 1569: 19.
  • Balestrasse KB, Gallego SM, Benavides MP, Tomaro ML. 2005. Polyamines and proline are affected by cadmium stress in nodules and roots of soybean plants. Plant and Soil 270: 343353.
  • Balmer Y, Vensel WH, Cai N, Manieri W, Schurmann P, Hurkman WJ, Buchanan BB. 2006. A complete ferredoxin/thioredoxin system regulates fundamental processes in amyloplasts. Proceedings of the National Academy of Sciences, USA 103: 29882993.
  • Barajas-López JD, Serrato AJ, Olmedilla A, Chueca A, Sahrawy M. 2007. Localization in roots and flowers of pea chloroplastic thioredoxin f and thioredoxin m proteins reveals new roles in nonphotosynthetic organs. Plant Physiology 145: 946960.
  • Bartoli CG, Pastori GM, Foyer CH. 2000. Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes III and IV. Plant Physiology 123: 335343.
  • Bashor CJ, Dalton DA. 1999. Effects of exogenous application and stem infusion of ascorbate on soybean (Glycine max) root nodules. New Phytologist 142: 1926.
  • Baudouin E, Frendo P, Le Gleuher M, Puppo A. 2004. A Medicago sativa haem oxygenase gene is preferentially expressed in root nodules. Journal of Experimental Botany 55: 4347.
  • Baudouin E, Pieuchot L, Engler G, Pauly N, Puppo A. 2006. Nitric oxide is formed in Medicago truncatula-Sinorhizobium meliloti functional nodules. Molecular Plant-Microbe Interactions 19: 970975.
  • Becana M, Klucas RV. 1992. Transition metals in legume root nodules. Iron dependent free radical production increases during nodule senescence. Proceedings of the National Academy of Sciences, USA 89: 89588962.
  • Benedito VA, Torres-Jerez I, Murray JD, Andirankaja A, Allen S, Kakar K, Wandrey M, Verdier J, Zuber H, Ott T et al. 2008. A gene expression atlas of the model legume Medicago truncatula. Plant Journal 55: 504513.
  • Blum R, Beck A, Korte A, Stengel A, Letzel T, Lendzian K, Grill E. 2007. Function of phytochelatin synthase in catabolism of glutathione-conjugates. Plant Journal 49: 740749.
  • Bors W, Langebartels C, Michel C, Sandermann H. 1989. Polyamines as radical scavengers and protectants against ozone damage. Phytochemistry 28: 15891595.
  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J. 1999. Polyamines and environmental challenges: recent development. Plant Science 140: 103125.
  • Bueno P, Soto MJ, Rodríguez-Rosales MP, Sanjuán J, Olivares J, Donaire JP. 2001. Time-course of lipoxygenase, antioxidant enzyme activities and H2O2 accumulation during the early stages of Rhizobium-legume symbiosis. New Phytologist 152: 9196.
  • Cárdenas L, Martínez A, Sánchez F, Quinto C. 2008. Fast, transient and specific intracelllular ROS changes in living root hair cells responding to Nod factors (NFs). Plant Journal 56: 802813.
  • Chaki M, Valderrama R, Fernández-Ocaña AM, Carreras A, López-Jaramillo J, Luque F, Palma JM, Pedrajas JR, Begara-Morales JC, Sánchez-Calvo B et al. 2009. Protein targets of tyrosine nitration in sunflower (Helianthus annuus L.) hypocotyls. Journal of Experimental Botany 60: 42214234.
  • Chinoy JJ. 1984. The role of ascorbic acid in growth, differentiation and metabolism of plants. The Hague: Martinus Nijhoff.
  • Clement M, Lambert A, Hérouart D, Boncompagni E. 2008. Identification of new up-regulated genes under drought stress in soybean nodules. Gene 426: 1522.
  • Cobbett C, Goldsbrough P. 2002. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology 53: 159182.
  • Colebatch G, Kloska S, Trevaskis B, Freund S, Altmann T, Udvardi MK. 2002. Novel aspects of symbiotic nitrogen fixation uncovered by transcript profiling with cDNA arrays. Molecular Plant-Microbe Interactions 15: 411420.
  • Comba ME, Benavides MP, Tomaro ML. 1998. Effect of salt stress on antioxidant defence system in soybean root nodules. Australian Journal of Plant Physiology 25: 665671.
  • Conklin PL, Saracco SA, Norris SR, Last RL. 2000. Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. Genetics 154: 847856.
  • Dalton DA. 1995. Antioxidant defenses of plants and fungi. In: AhmadS, ed. Oxidative stress and antioxidant defenses in biology. New York, NY, USA: Chapman and Hall, 298355.
  • Dalton DA, Boniface C, Turner Z, Lindahl A, Kim HJ, Jelinek L, Govindarajulu M, Finger RE, Taylor CG. 2009. Physiological roles of glutathione S-transferases in soybean root nodules. Plant Physiology 150: 521530.
  • Dalton DA, Langeberg L, Treneman N. 1993. Correlations between the ascorbate-glutathione pathway and effectiveness in legume root nodules. Physiologia Plantarum 87: 365370.
  • Dalton DA, Russell SA, Hanus FJ, Pascoe GA, Evans HJ. 1986. Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. Proceedings of the National Academy of Sciences, USA 83: 38113815.
  • De Lorenzo CA, Fernández-Pascual MM, de Felipe MR. 1994. Protective enzymes against active oxygen species during nitrate-induced senescence of Lupinus albus nodules. Journal of Plant Physiology 144: 633640.
  • De Lorenzo C, Lucas MM, Vivo A, de Felipe MR. 1990. Effect of nitrate on peroxisome ultrastructure and catalase activity in nodules of Lupinus albus L. cv. Multolupa. Journal of Experimental Botany 41: 15731578.
  • De Michele R, Vurro E, Rigo C, Costa A, Elviri L, Di Valentin M, Careri M, Zottini M, Sanità di Toppi L, Lo Schiavo F. 2009. Nitric oxide is involved in cadmium-induced programmed cell death in Arabidopsis suspension cultures. Plant Physiology 150: 217228.
  • De Tullio MC, Arrigoni O. 2004. Hopes, disillusions and more hopes from vitamin C. Cellular Molecular Life Sciences 61: 209219.
  • De Tullio MC, Jiang KN, Feldman LJ. 2010. Redox regulation of root apical meristem organization: connecting root development to its environment. Plant Physiology 48: 328336.
  • Del Río LA, Corpas FJ, Barroso JB. 2004. Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry 65: 783792.
  • Dietz KJ. 2003. Plant peroxiredoxins. Annual Review of Plant Biology 54: 93107.
  • Edwards E, Dixon DP, Walbot V. 2000. Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends in Plant Science 5: 193198.
  • Efrose RC, Flemetakis E, Sfichi L, Stedel C, Kouri ED, Udvardi MK, Kotzabasis K, Katinakis P. 2008. Characterization of spermidine and spermine synthases in Lotus japonicus: induction and spatial organization of polyamine biosynthesis in nitrogen fixing nodules. Planta 228: 3749.
  • Escuredo PR, Minchin FR, Gogorcena Y, Iturbe-Ormaetxe I, Klucas RV, Becana M. 1996. Involvement of activated oxygen in nitrate-induced senescence of pea root nodules. Plant Physiology 110: 11871195.
  • Evans PJ, Gallesi D, Mathieu C, Hernández MJ, de Felipe N, Halliwell B, Puppo A. 1999. Oxidative stress occurs during soybean nodule senescence. Planta 208: 7379.
  • Ferrarini A, De Stefano M, Baudouin E, Pucciariello C, Polverari A, Puppo A, Delledonne M. 2008. Expression of Medicago truncatula genes responsive to nitric oxide in pathogenic and symbiotic conditions. Molecular Plant-Microbe Interactions 21: 781790.
  • Flemetakis E, Efrose RC, Desbrosses G, Dimou M, Delis C, Aivalakis G, Udvardi MK, Katinakis P. 2004. Induction and spatial organization of polyamine biosynthesis during nodule development in Lotus japonicus. Molecular Plant-Microbe Interactions 17: 12831293.
  • Foyer CH, Noctor G. 2005. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant, Cell & Environment 28: 10561071.
  • Frendo P, Gallesi D, Turnbull R, Van de Sype G, Hérouart D, Puppo A. 1999. Localisation of glutathione and homoglutathione in Medicago truncatula is correlated to a differential expression of genes involved in their synthesis. Plant Journal 17: 215219.
  • Frendo P, Harrison J, Norman C, Hernández-Jiménez MJ, Van de Sype G, Gilabert A, Puppo A. 2005. Glutathione and homoglutathione play a critical role in the nodulation process of Medicago truncatula. Molecular Plant-Microbe Interactions 18: 254259.
  • Frendo P, Hernández-Jiménez MJ, Mathieu C, Duret L, Gallesi D, Van de Sype G, Hérouart D, Puppo A. 2001. A Medicago truncatula homoglutathione synthetase is derived from glutathione synthetase by gene duplication. Plant Physiology 126: 17061715.
  • Fujihara S, Abe H, Minakawa Y, Akao S, Yoneyama T. 1994. Polyamines in nodules from various plant-microbe symbiotic associations. Plant and Cell Physiology 35: 11271134.
  • Gisk B, Yasui Y, Kohchi T, Frankenberg-Dinkel N. 2010. Characterization of the haem oxygenase protein family in Arabidopsis thaliana reveals a diversity of functions. Biochemical Journal 425: 425434.
  • Gogorcena Y, Gordon AJ, Escuredo PR, Minchin FR, Witty JF, Moran JF, Becana M. 1997. N2 fixation, carbon metabolism, and oxidative damage in nodules of dark-stressed common bean plants. Plant Physiology 113: 11931201.
  • Gogorcena Y, Iturbe-Ormaetxe I, Escuredo PR, Becana M. 1995. Antioxidant defenses against activated oxygen in pea nodules subjected to water stress. Plant Physiology 108: 753759.
  • Grill E, Gekeler W, Winnacker EL, Zenk MH. 1986. Homo-phytochelatins are heavy metal-binding peptides of homo-glutathione containing Fabales. FEBS Letters 205: 4750.
  • Groten K, Dutilleul C, van Heerden PDR, Vanacker H, Bernard S, Finkemeier I, Dietz K-J, Foyer CH. 2006. Redox regulation of peroxiredoxin and proteinases by ascorbate and thiols during pea root nodule senescence. FEBS Letters 580: 12691276.
  • Groten K, Vanacker H, Dutilleul C, Bastian F, Bernard S, Carzaniga R, Foyer CH. 2005. The roles of redox processes in pea nodule development and senescence. Plant, Cell & Environment 28: 12931304.
  • Gucciardo S, Wisniewski JP, Brewin NJ, Bornemann S. 2007. A germin-like protein with superoxide dismutase activity in pea nodules with high protein sequence identity to a putative rhicadhesin receptor. Journal of Experimental Botany 58: 11611171.
  • Hakoyama T, Watanabe H, Tomita J, Yamamoto A, Sato S, Mori Y, Kouchi H, Suganuma N. 2009. Nicotianamine synthase specifically expressed in root nodules of Lotus japonicus. Planta 230: 309317.
  • Halliwell B, Gutteridge JMC. 2007. Free radicals in biology and medicine, 4th edn. Oxford, UK: Oxford University Press.
  • Hancock RD, Viola R. 2005. Biosynthesis and catabolism of L-ascorbic acid in plants. Critical Reviews in Plant Sciences 24: 167188.
  • Harrison J, Jamet A, Muglia CI, Van de Sype G, Aguilar OM, Puppo A, Frendo P. 2005. Glutathione plays a functional role in growth and symbiotic capacity of Sinorhizobium meliloti. Journal of Bacteriology 187: 168174.
  • Herbette S, Lenne C, Leblanc N, Julien JL, Drevet JR, Roeckel-Drevet P. 2002. Two GPX-like proteins from Lycopersicon esculentum and Helianthus annuus are antioxidant enzymes with phospholipid hydroperoxide glutathione peroxidase and thioredoxin peroxidase activities. European Journal of Biochemistry 269: 24142420.
  • Hernández-Jiménez MJ, Lucas MM, de Felipe MR. 2002. Antioxidant defence and damage in senescing lupin nodules. Plant Physiology and Biochemistry 40: 645657.
  • Herold S, Puppo A. 2005. Oxyleghemoglobin scavenges nitrogen monoxide and peroxynitrite: a possible role in functioning nodules? Journal of Biological Inorganic Chemistry 10: 935945.
  • Igamberdiev AU, Hill RD. 2004. Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. Journal of Experimental Botany 55: 24732482.
  • Innocenti G, Pucciariello C, Le Gleuher M, Hopkins J, de Stefano M, Delledonne M, Puppo A, Baudouin E, Frendo P. 2007. Glutathione synthesis is regulated by nitric oxide in Medicago truncatula roots. Planta 225: 15971602.
  • Ishikawa I, Dowdle J, Smirnoff N. 2006. Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiologia Plantarum 126: 343355.
  • Jamet A, Mandon K, Puppo A, Hérouart D. 2007. H2O2 is required for optimal establishment of the Medicago sativa/Sinorhizobium meliloti symbiosis. Journal of Bacteriology 189: 87418745.
  • Jamet A, Sigaud S, Van de Sype G, Puppo A, Hérouart D. 2003. Expression of the bacterial catalase genes during Sinorhizobium meliloti-Medicago sativa symbiosis and their crucial role during the infection process. Molecular Plant-Microbe Interactions 16: 217225.
  • Jebara S, Jebara M, Limam F, Aouani ME. 2005. Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. Journal of Plant Physiology 162: 929936.
  • Klapheck S, Schlunz S, Bergmann L. 1995. Synthesis of phytochelatins and homophytochelatins in Pisum sativum L. Plant Physiology 107: 515521.
  • Ko MP, Huang PY, Huang JS, Baker KR. 1987. The occurrence of phytoferritin and its relationship to effectiveness of soybean nodules. Plant Physiology 83: 299305.
  • Kumari MVR, Hiramatsu M, Ebadi M. 1998. Free radical scavenging actions of metallothionein isoforms I and II. Free Radical Research 29: 93101.
  • Lahiri K, Chattopadhyay S, Chattopadhyay S, Ghosh B. 1992. Polyamine metabolism in nodules of Vigna mungo during senescence. Phytochemistry 31: 40874090.
  • Laing WA, Wright MA, Cooney J, Buley SM. 2007. The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content. Proceedings of the National Academy of Sciences, USA 104: 95349539.
  • Lee M-Y, Shin K-H, Kim Y-K, Suh J-Y, Gu Y-Y, Kim M-R, Hur Y-S, Son O, Kim J-S, Song E et al. 2005. Induction of thioredoxin is required for nodule development to reduce reactive oxygen species levels in soybean roots. Plant Physiology 139: 18811889.
  • Linster CL, Clarke SG. 2008. L-Ascorbate biosynthesis in higher plants: the role of VTC2. Trends in Plant Science 13: 567573.
  • Linster CL, Gomez TA, Christensen KC, Adler LN, Young BD, Brenner C, Clarke SG. 2007. Arabidopsis VTC2 encodes a GDP-L-galactose phosphorylase, the last unknown enzyme in the Smirnoff-Wheeler pathway to ascorbic acid in plants. Journal of Biological Chemistry 282: 1887918885.
  • Liu X, Theil EC. 2005. Ferritins: dynamic management of biological iron and oxygen chemistry. Accounts of Chemical Research 38: 167175.
  • Loscos J, Matamoros MA, Becana M. 2008. Ascorbate and homoglutathione metabolism in common bean nodules under stress conditions and during natural senescence. Plant Physiology 146: 12821292.
  • Lucas MM, Van de Sype G, Hérouart D, Hernández MJ, Puppo A, de Felipe MR. 1998. Immunolocalization of ferritin in determinate and indeterminate legume root nodules. Protoplasma 204: 6170.
  • Marino D, González EM, Arrese-Igor C. 2006. Drought effects on carbon and nitrogen metabolism of pea nodules can be mimicked by paraquat: evidence for the occurrence of two regulation pathways under oxidative stresses. Journal of Experimental Botany 57: 665673.
  • Matamoros MA, Dalton DA, Clemente MR, Rubio MC, Ramos J, Becana M. 2003. Biochemistry and molecular biology of antioxidants in the rhizobia-legume symbiosis. Plant Physiology 133: 111.
  • Matamoros MA, Loscos J, Coronado MJ, Ramos J, Sato S, Testillano PS, Tabata S, Becana M. 2006. Biosynthesis of ascorbic acid in legume root nodules. Plant Physiology 141: 10681077.
  • Matamoros MA, Moran JF, Iturbe-Ormaetxe I, Rubio MC, Becana M. 1999. Glutathione and homoglutathione synthesis in legume root nodules. Plant Physiology 121: 879888.
  • Mathieu C, Moreau S, Frendo P, Puppo A, Davies MJ. 1998. Direct detection of radicals in intact soybean nodules: presence of nitric oxide leghemoglobin complexes. Free Radical Biology and Medicine 24: 12421249.
  • Maughan S, Foyer CH. 2006. Engineering and genetic approaches to modulating the glutathione network in plants. Physiologia Plantarum 126: 382397.
  • McGonigle B, Keeler SJ, Lau S-MC, Koeppe MK, O’Keefe DP. 2000. A genomics approach to the comprehensive analysis of glutathione S-transferase gene family in soybean and maize. Plant Physiology 124: 11051120.
  • McGonigle B, Lau S-MC, Jennings LD, O’Keefe DP. 1998. Homoglutathione selectivity by soybean glutathione S-transferases. Pesticide Biochemistry Physiology 62: 115125.
  • Meakin GE, Bueno E, Jepson B, Bedmar EJ, Richardson DJ, Delgado MJ. 2007. The contribution of bacteroidal nitrate and nitrite reduction to the formation of nitrosylleghaemoglobin complexes in soybean root nodules. Microbiology 153: 411419.
  • Meyer Y, Reichheld JP, Vignois F. 2005. Thioredoxins in Arabidopsis and other plants. Photosynthesis Research 86: 419433.
  • Meyer Y, Verdoucq L, Vignols F. 1999. Plant thioredoxins and glutaredoxins: identity and putative roles. Trends in Plant Science 4: 388394.
  • Miao YC, Lv D, Wang PC, Wang XC, Chen J, Miao C, Song CP. 2006. An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 18: 27492766.
  • Mithöfer A. 2002. Suppression of plant defence in rhizobia-legume symbiosis. Trends in Plant Science 7: 440444.
  • Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7: 405410.
  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. 2004. Reactive oxygen gene network of plants. Trends in Plant Science 9: 490498.
  • Muglia C, Comai G, Spegazzini E, Riccillo PM, Aguilar OM. 2008. Glutathione produced by Rhizobium tropici is important to prevent early senescence in common bean nodules. FEMS Microbiology Letters 286: 191198.
  • Nandwal AS, Kukreja S, Kumar N, Sharma PK, Jain M, Manmn A, Singh S. 2007. Plant-water status, ethylene evolution, N2-fixing efficiency, antioxidant activity and lipid peroxidation in Cicer arietinum L. nodules as affected by short-term salinization and desalinization. Journal of Plant Physiology 164: 11611169.
  • Navrot N, Collin V, Gualberto J, Gelhaye E, Hirasawa M, Rey P, Knaff DB, Issakidis E, Jacquot JP, Rouhier N. 2006. Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses. Plant Physiology 142: 13641379.
  • Naya L, Ladrera R, Ramos J, González EM, Arrese-Igor C, Minchin FR, Becana M. 2007. The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiology 144: 11041114.
  • Noctor G, Foyer CH. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology 49: 249279.
  • Pastori GM, Kiddle G, Antoniw J, Bernard S, Veliovic-Jovanovic S, Verrier PJ, Noctor G, Foyer CH. 2003. Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell 15: 939951.
  • Pignocchi C, Fletcher JM, Wilkinson JE, Barnes JD, Foyer CH. 2003. The function of ascorbate oxidase in tobacco. Plant Physiology 132: 16311641.
  • Pignocchi C, Foyer CH. 2003. Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. Current Opinion in Plant Biology 6: 379389.
  • Potters G, Horemans N, Caubergs RJ, Asard H. 2000. Ascorbate and dehydroascorbate influence cell cycle progression in a tobacco cell suspension. Plant Physiology 124: 1720.
  • Puppo A, Groten K, Bastian F, Carzaniga R, Soussi M, Lucas MM, de Felipe MR, Harrison J, Vanacker H, Foyer CH. 2005. Legume nodule senescence: roles for redox and hormone signalling in the orchestration of the natural aging process. New Phytologist 165: 683701.
  • Ragland M, Theil EC. 1993. Ferritin (messenger RNA, protein) and iron concentrations during soybean nodule development. Plant Molecular Biology 21: 555560.
  • Ramos J, Clemente MR, Naya L, Loscos J, Pérez-Rontomé C, Sato S, Tabata S, Becana M. 2007. Phytochelatin synthases of the model legume Lotus japonicus. A small multigene family with differential response to cadmium and alternatively spliced variants. Plant Physiology 143: 11101118.
  • Ramos J, Matamoros MA, Naya L, James EK, Rouhier N, Sato S, Tabata S, Becana M. 2009. The glutathione peroxidase gene family of Lotus japonicus: characterization of genomic clones, expression analyses and immunolocalization in legumes. New Phytologist 181: 103114.
  • Ramos J, Naya L, Gay M, Abian J, Becana M. 2008. Functional characterization of an unusual phytochelatin synthase, LjPCS3, of Lotus japonicus. Plant Physiology 148: 536545.
  • Redondo FJ, Coba de la Peña T, Morcillo CN, Lucas MM, Pueyo JJ. 2009. Overexpression of flavodoxin in bacteroids induces changes in antioxidant metabolism leading to delayed senescence and starch accumulation in alfalfa root nodules. Plant Physiology 149: 11661178.
  • Romero-Puertas MC, Laxa M, Mattè A, Zaninotto F, Finkemeier I, Jones AME, Perazzolli M, Vandelle E, Dietz K-J, Delledonne M. 2007. S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration. Plant Cell 19: 41204130.
  • Ross EJH, Kramer SB, Dalton DA. 1999. Effectiveness of ascorbate and ascorbate peroxidase in promoting nitrogen fixation in model systems. Phytochemistry 52: 12031210.
  • Rouhier N, Couturier J, Jacquot JP. 2006. Genome-wide analysis of plant glutaredoxin systems. Journal of Experimental Botany 57: 16851696.
  • Rouhier N, Jacquot JP. 2005. The plant multigenic family of thiol peroxidases. Free Radical Biology and Medicine 38: 14131421.
  • Rubio MC, Becana M, Sato S, James EK, Tabata S, Spaink HP. 2007. Characterization of genomic clones and expression analysis of the three types of superoxide dismutases during nodule development in Lotus japonicus. Molecular Plant-Microbe Interactions 20: 262275.
  • Rubio MC, James EK, Clemente MR, Bucciarelli B, Fedorova M, Vance CP, Becana M. 2004. Localization of superoxide dismutases and hydrogen peroxide in legume root nodules. Molecular Plant-Microbe Interactions 17: 12941305.
  • Ryter SW, Tyrrell RM. 2000. The heme synthesis and degradation pathways: role in oxidant sensitivity – heme oxygenase has both pro- and antioxidant properties. Free Radical Biology and Medicine 2: 289309.
  • Santos R, Hérouart D, Sigaud S, Touati D, Puppo A. 2001. Oxidative burst in alfalfa-Sinorhizobium meliloti symbiotic interaction. Molecular Plant-Microbe Interactions 14: 8689.
  • Scandalios JG, Guan L, Polidoros AN. 1997. Catalases in plants: gene structure, properties, regulation, and expression. In: ScandaliosJG, ed. Oxidative stress and the molecular biology of antioxidant defenses. Plain View, NY, USA: Cold Spring Harbor Laboratory Press, 343406.
  • Shaw SL, Long SR. 2003. Nod factor inhibition of reactive oxygen efflux in a host legume. Plant Physiology 132: 21962204.
  • Shimoda Y, Shimoda-Sasakura F, Kucho K, Kanamori N, Nagata M, Suzuki A, Abe M, Higashi S, Uchiumi T. 2009. Overexpression of class 1 plant hemoglobin genes enhances symbiotic nitrogen fixation activity between Mesorhizobium loti and Lotus japonicus. Plant Journal 57: 254263.
  • Shvaleva A, Coba de la Peña T, Rincón A, Morcillo CN, García de la Torre VS, Lucas MM, Pueyo JJ. 2010. Flavodoxin overexpression reduces cadmium-induced damage in alfalfa root nodules. Plant and Soil 326: 109121.
  • Siendones E, González-Reyes JA, Santos-Ocaña C, Navas P, Córdoba F. 1999. Biosynthesis of ascorbic acid in kidney bean. L-galactono-γ-lactone dehydrogenase is an intrinsic protein located at the mitochondrial inner membrane. Plant Physiology 120: 907912.
  • Sigaud S, Becquet V, Frendo P, Puppo A, Hérouart D. 1999. Differential regulation of two divergent Sinorhizobium meliloti genes for HPII-like catalases during free-living growth and protective role of both catalases during symbiosis. Journal of Bacteriology 181: 26342639.
  • Smirnoff N. 2000. Ascorbic acid: metabolism and functions of a multi-faceted molecule. Current Opinion in Plant Biology 3: 229235.
  • Strozycki PM, Szczurek A, Lotocka B, Figlerowicz M, Legocki AB. 2007. Ferritins and nodulation in Lupinus luteus: iron management in indeterminate type nodules. Journal of Experimental Botany 58: 31453153.
  • Swaraj K, Dhandi S, Sheokand S. 1995. Relationship between defense mechanism against activated oxygen species and nodule functioning with progress in plant and nodule development in Cajanus cajan L Millsp. Plant Science 112: 6574.
  • Tejera NA, Campos R, Sanjuán J, Lluch C. 2004. Nitrogenase and antioxidant enzyme activities in Phaseolus vulgaris nodules formed by Rhizobium tropici isogenic strains with varying tolerance to salt stress. Journal of Plant Physiology 161: 329338.
  • Tennstedt P, Peisker D, Böttcher C, Trampczynska A, Clemens S. 2009. Phytochelatin synthesis is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc. Plant Physiology 149: 938948.
  • Valpuesta V, Botella MA. 2004. Biosynthesis of L-ascorbic acid in plants: new pathways for an old antioxidant. Trends in Plant Science 9: 573577.
  • Vargas MD, Encarnación S, Dávalos A, Reyes-Pérez A, Mora Y, García-de los Santos A, Brom S, Mora J. 2003. Only one catalase, katG, is detectable in Rhizobium etli, and is encoded along with the regulator OxyR on a plasmid replicon. Microbiology 149: 11651176.
  • Vernoux T, Wilson RC, Seeley KA, Reichheld JP, Muroy S, Brown S, Maughan SC, Cobbett CS, van Montagu M, Inzé D et al. 2000. The ROOTMERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12: 97109.
  • Vieira Dos Santos C, Rey P. 2006. Plant thioredoxins are key actors in the oxidative stress response. Trends in Plant Science 11: 329334.
  • Vieweg MF, Hohnjec N, Küster H. 2005. Two genes encoding different truncated hemoglobins are regulated during root nodule and arbuscular mycorrhiza symbioses of Medicago truncatula. Planta 220: 757766.
  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inzé D, Van Camp W. 1997. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO Journal 16: 48064816.
  • von Wirén N, Klair S, Bansal S, Briat J-F, Khodr H, Shioiri T, Leigh RA, Hider RC. 1999. Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants. Plant Physiology 119: 11071114.
  • Wisniewski JP, Rathbun EA, Knox JP, Brewin NJ. 2000. Involvement of diamine oxidase and peroxidase in insolubilization of the extracellular matrix: implications for pea nodule initiation by Rhizobium leguminosarum. Molecular Plant-Microbe Interactions 13: 413420.
  • Wong HL, Sakamoto T, Kawasaki T, Umemura K, Shimamoto K. 2004. Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiology 135: 14471456.
  • Yamasaki H, Cohen MF. 2006. NO signal at the crossroads: polyamine-induced nitric oxide synthesis in plants? Trends in Plant Science 11: 522524.
  • Yannarelli GG, Noriega GO, Batlle A, Tomaro ML. 2006. Heme oxygenase up-regulation in ultraviolet-B irradiated soybean plants involves reactive oxygen species. Planta 224: 11541162.
  • Zilli CG, Balestrasse KB, Yannarelli GG, Polizio AH, Santacruz DM, Tomaro ML. 2008. Heme oxygenase up-regulation under salt stress protects nitrogen metabolism in nodules of soybean plants. Environmental and Experimental Botany 64: 8389.