SEARCH

SEARCH BY CITATION

References

  • Andersson CR, Jensen EO, Llewellyn DJ, Dennis ES, Peacock WJ. 1996. A new hemoglobin gene from soybean: a role for hemoglobin in all plants. Proceedings of the National Academy of Sciences, USA 93: 56825687.
  • Bethke PC, Libourel IGL, Reinöhl V, Jones RL. 2006. Sodium nitroprusside, cyanide, nitrite, and nitrate break Arabidopsis seed dormancy in a nitric oxide-dependent manner. Planta 223: 805812.
  • Boisson-Dernier A, Chabaud M, Garcia F, Bécard G, Rosenberg C, Barker DG. 2001. Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Molecular Plant-Microbe Interactions 14: 695700.
  • Broughton BJ, Dilworth MJ. 1971. Control of leghaemoglobin synthesis in snake beans. Biochem Journal 125: 10751080.
  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W-R. 2005. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiology 139: 517.
  • Dalton DA, Joyner SL, Becana M, Iturbe-Ormaetxe I, Chatfield JM. 1998. Antioxidant defenses in the peripheral cell layers of legume root nodules. Plant Physiology 116: 3743.
  • Díaz CL, Grønlund M, Schlaman HRM, Spaink HP. 2005. Induction of hairy roots for symbiotic gene expression studies. In: MárquezAJ, ed. Lotus japonicus handbook. Dordrecht, the Netherlands: Springer, 261277.
  • Dordas C. 2009. Nonsymbiotic hemoglobins and stress tolerance in plants. Plant Science 176: 433440.
  • Dordas C, Hasinoff BB, Rivoal J, Hill RD. 2004. Class-1 hemoglobins, nitrate and NO levels in anoxic maize cell-suspension cultures. Planta 219: 6672.
  • Dordas C, Rivoal J, Hill RD. 2003. Plant haemoglobins, nitric oxide and hypoxic stress. Annals of Botany 91: 173178.
  • Frugier F, Kosuta S, Murray JD, Crespi M, Szczyglowski K. 2008. Cytokinin: secret agent of symbiosis. Trends in Plant Science 13: 115120.
  • Gabaldón C, Gómez Ros LV, Pedreño MA, Ros Barceló A. 2005. Nitric oxide production by the differentiating xylem of Zinnia elegans. New Phytologist 165: 121130.
  • Gaupels F, Furch ACU, Will T, Mur LAJ, Kogel KH, van Bel AJE. 2008. Nitric oxide generation in Vicia faba phloem cells reveals them to be sensitive detectors as well as possible systemic transducers of stress signals. New Phytologist 178: 634646.
  • Hebelstrup KH, Hunt P, Dennis E, Bjerregaard Jensen S, Østergaard Jensen E. 2006. Hemoglobin is essential for normal growth of Arabidopsis organs. Physiologia Plantarum 127: 157166.
  • Herold S, Puppo A. 2005. Oxyleghemoglobin scavenges nitrogen monoxide and peroxynitrite: a possible role in functioning nodules? Journal of Biological Inorganic Chemistry 10: 935945.
  • Hoy JA, Hargrove MS. 2008. The structure and function of plant hemoglobins. Plant Physiology and Biochemistry 46: 371379.
  • Huang X, Stettmaier K, Michel C, Hutzler P, Mueller MJ, Durner J. 2004. Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana. Planta 218: 938946.
  • Hunt PW, Klok EJ, Trevaskis B, Watts RA, Ellis MH, Peacock WJ, Dennis ES. 2002. Increased level of hemoglobin 1 enhances survival of hypoxic stress and promotes early growth in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA 99: 1719717202.
  • Hunt PW, Watts RA, Trevaskis B, Llewelyn DJ, Burnell J, Dennis ES, Peacock WJ. 2001. Expression and evolution of functionally distinct haemoglobin genes in plants. Plant Molecular Biology 47: 677692.
  • Igamberdiev AU, Hill RD. 2004. Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classical fermentation pathways. Journal of Experimental Botany 55: 24732482.
  • Jefferson RA, Kavanagh TA, Bevan MW. 1987. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal 6: 39013907.
  • Jokipii-Lukkari S, Frey AD, Kallio PT, Häggman H. 2009. Intrinsic non-symbiotic and truncated haemoglobins and heterologous Vitreoscilla haemoglobin expression in plants. Journal of Experimental Botany 60: 409422.
  • Lee H, Kim H, An CS. 2004. Cloning and expression analysis of 2-on-2 hemoglobin from soybean. Journal of Plant Biology 47: 9298.
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25: 402408.
  • Mathieu C, Moreau S, Frendo P, Puppo A, Davies MJ. 1998. Direct detection of radicals in intact soybean nodules: presence of nitric oxide-leghemoglobin complexes. Free Radical Biology and Medicine 24: 12421249.
  • Meakin GE, Bueno E, Jepson B, Bedmar EJ, Richardson DJ, Delgado MJ. 2007. The contribution of bacteroidal nitrate and nitrite reduction to the formation of nitrosylleghaemoglobin complexes in soybean root nodules. Microbiology 153: 411419.
  • Minchin FR, James EK, Becana M. 2008. Oxygen diffusion, production of reactive oxygen and nitrogen species, and antioxidants in legume nodules. In: DilworthMJ, JamesEK, SprentJI, NewtonWE, eds. Nitrogen-fixing leguminous symbioses. Heidelberg, Germany: Springer, 321362.
  • Nagata M, Murakami E, Shimoda Y, Shimoda-Sasakura F, Kucho K, Suzuki A, Abe M, Higashi S, Uchiumi T. 2008. Expression of a class 1 hemoglobin gene and production of nitric oxide in response to symbiotic and pathogenic bacteria in Lotus japonicus. Molecular Plant-Microbe Interactions 21: 11751183.
  • Niemann J, Tisa LS. 2008. Nitric oxide and oxygen regulate truncated hemoglobin gene expression in Frankia strain CcI3. Journal of Bacteriology 190: 78647867.
  • Ohwaki Y, Kawagishi-Kobayashi M, Wakasa K, Fujihara S, Yoneyama T. 2005. Induction of class-1 non-symbiotic hemoglobin genes by nitrate, nitrite and nitric oxide in cultured rice cells. Plant Cell Physiology 46: 324331.
  • Ott T, van Dongen JT, Günther C, Krusell L, Desbrosses G, Vigeolas H, Bock V, Czechowski T, Geigenberger P, Udvardi MK. 2005. Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Current Biology 15: 531535.
  • Perazzolli M, Dominici P, Romero-Puertas MC, Zago E, Zeier J, Sonoda M, Lamb C, Delledonne M. 2004. Arabidopsis nonsymbiotic hemoglobin AHb1 modulates nitric oxide bioactivity. Plant Cell 16: 27852794.
  • Ross EJH, Stone JM, Elowsky CG, Arredondo-Peter R, Klucas RV, Sarath G. 2004. Activation of the Oryza sativa non-symbiotic haemoglobin-2 promoter by the cytokinin-regulated transcription factor, ARR1. Journal of Experimental Botany 55: 17211731.
  • Rubio MC, Becana M, Kanematsu S, Ushimaru T, James EK. 2009. Immunolocalization of antioxidant enzymes in high-pressure frozen root and stem nodules of Sesbania rostrata. New Phytologist 183: 395407.
  • Sakamoto A, Sakurao S, Fukunaga K, Matsubara T, Ueda-Hashimoto M, Tsukamoto S, Takahashi M, Morikawa H. 2004. Three distinct Arabidopsis hemoglobins exhibit peroxidase-like activity and differentially mediate nitrite-dependent protein nitration. FEBS Letters 572: 2732.
  • Sasakura F, Uchiumi T, Shimoda Y, Suzuki A, Takenouchi K, Higashi S, Abe M. 2006. A class 1 hemoglobin gene from Alnus firma functions in symbiotic and nonsymbiotic tissues to detoxify nitric oxide. Molecular Plant-Microbe Interactions 19: 441450.
  • Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K et al. 2008. Genome structure of the legume Lotus japonicus. DNA Research 15: 227239.
  • Seregélyes C, Igamberdiev AU, Maassen A, Henning J, Dudits D, Hill RD. 2004. NO-degradation by alfalfa class 1 hemoglobin (Mhb1): a possible link to PR-1a gene expression in Mhb 1-overproducing tobacco plants. FEBS Letters 571: 6166.
  • Shimoda Y, Nagata M, Suzuki A, Abe M, Sato S, Kato T, Tabata S, Higashi S, Uchiumi T. 2005. Symbiotic Rhizobium and nitric oxide induce gene expression of non-symbiotic hemoglobin in Lotus japonicus. Plant Cell Physiology 46: 99107.
  • Shimoda Y, Shimoda-Sasakura F, Kucho K, Kanamori N, Nagata M, Suzuki A, Abe M, Higashi S, Uchiumi T. 2009. Overexpression of class 1 plant hemoglobin genes enhances symbiotic nitrogen fixation activity between Mesorhizobium loti and Lotus japonicus. Plant Journal 57: 254263.
  • Sowa AW, Duff SMG, Guy PA, Hill RD. 1998. Altering hemoglobin levels changes energy status in maize cells under hypoxia. Proceedings of the National Academy of Sciences, USA 95: 1031710321.
  • Trevaskis B, Watts RA, Anderson CR, Llewellyn DJ, Hargrove MS, Olson JS, Dennis ES, Peacock WJ. 1997. Two hemoglobin genes in Arabidopsis thaliana: the evolutionary origins of leghemoglobins. Proceedings of the National Academy of Sciences, USA 94: 1223012234.
  • Tun NN, Santa-Catarina C, Begum T, Silveira V, Handro W, Segal Floh EI, Scherer GFE. 2006. Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiology 47: 346354.
  • Uchiumi T, Shimoda Y, Tsuruta T, Mukoyoshi Y, Suzuki A, Senoo K, Sato S, Kato T, Tabata S, Higashi S et al. 2002. Expression of symbiotic and nonsymbiotic globin genes responding to microsymbionts on Lotus japonicus. Plant Cell Physiology 43: 13511358.
  • Vickers CE, Schenk PM, Li D, Mullineaux PM, Gresshoff PM. 2007. pGFPGUSPlus, a new binary vector for gene expression studies and optimising transformation systems in plants. Biotechnology Letters 29: 17931796.
  • Vieweg MF, Hohnjec N, Küster H. 2005. Two genes encoding different truncated hemoglobins are regulated during root nodule and arbuscular mycorrhiza symbioses of Medicago truncatula. Planta 220: 757766.
  • Vinogradov SN, Hoogewijs D, Bailly X, Mizuguchi K, Dewilde S, Moens L, Vanfleteren JR. 2007. Model of globin evolution. Gene 398: 132142.
  • Watts RA, Hunt PW, Hvitved AN, Hargrove MS, Peacock WJ, Dennis ES. 2001. A hemoglobin from plants homologous to truncated hemoglobins from microorganisms. Proceedings of the National Academy of Sciences, USA 98: 1011910124.
  • Wittenberg JB, Bolognesi M, Wittenberg BA, Guertin M. 2002. Truncated hemoglobins: a new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants. Journal of Biological Chemistry 277: 871874.