SEARCH

SEARCH BY CITATION

References

  • Ackerly D. 1999. Self-shading, carbon gain and leaf dynamics: a test of alternative optimality models. Oecologia 119: 300310.
  • Alton PB, North P. 2007. Interpreting shallow, vertical nitrogen profiles in tree crowns: a three-dimensional, radiative-transfer simulation accounting for diffuse sunlight. Agricultural and Forest Meteorology 145: 110124.
  • Asner GP. 1998. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sensing of Environment 64: 234253.
  • Asner G, Vitousek P. 2005. Remote analysis of biological invasion and biogeochemical change. Proceedings of the National Academy of Sciences, USA 102: 43834386.
  • Asner GP, Wessman CA. 1997. Scaling PAR absorption from the leaf to landscape level in spatially heterogeneous ecosystems. Ecological Modelling 103: 8197.
  • Asner GP, Wessman CA, Schimel DS, Archer S. 1998. Variability in leaf and litter optical properties: implications for BRDF model inversions using AVHRR, MODIS, and MISR. Remote Sensing of Environment 63: 243257.
  • Baldocchi DD, Hutchison BA. 1986. On estimating canopy photosynthesis and stomatal conductance in a deciduous forest with clumped foliage. Tree Physiology 2: 155168.
  • Baranoski GVG. 2006. Modeling the interaction of infrared radiation (750 to 2500 nm) with bifacial and unifacial plant leaves. Remote Sensing of Environment 100: 335347.
  • Baranoski GVG, Rokne JG. 1997. An algorithmic reflectance and transmittance model for plant tissue. Computer Graphics Forum 16: C141C150.
  • Blackburn GA. 1998. Quantifying chlorophylls and carotenoids at leaf and canopy scales: an evaluation of some hyperspectral approaches. Remote Sensing of Environment 66: 273285.
  • Blackburn GA. 1999. Relationships between spectral reflectance and pigment concentrations in stacks of deciduous broadleaves. Remote Sensing of Environment 70: 224237.
  • Bonan GB. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320: 14441449.
  • Brewer CK, Winne JC, Redmond RL, Opitz DW, Mangrich MV. 2005. Classifying and mapping wildfire severity: a comparison of methods. Photogrammetric Engineering & Remote Sensing 71: 13111320.
  • Broge NH, Leblanc E. 2001. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment 76: 156172.
  • Brooks TJ, Wall GW, Pinter PJ Jr, Kimball BA, LaMorte RL, Leavitt SW, Matthias AD, Adamsen FJ, Hunsaker DJ, Webber AN. 2000. Acclimation response of spring wheat in a free-air CO2 enrichment (FACE) atmosphere with variable soil nitrogen regimes. 3. Canopy architecture and gas exchange. Photosynthesis Research 66: 97108.
  • Burke IC, Kittel TGF, Lauenroth WK, Snook P, Yonker CM, Parton WJ. 1991. Regional analysis of the central Great Plains. BioScience 41: 685692.
  • Carter GA. 1994. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. International Journal of Remote Sensing 15: 697703.
  • Carter GA, Miller RL. 1994. Early detection of plant stress by digital imaging within narrow stress-sensitive wavebands. Remote Sensing of Environment 50: 295302.
  • Castro KL, Sanchez-Azofeifa GA. 2008. Changes in spectral properties, chlorophyll content and internal mesophyll structure of senescing Populus balsamifera and Populus tremuloides leaves. Sensors 8: 5169.
  • Ceccato P, Flasse S, Grégoire J-M. 2002a. Designing a spectral index to estimate vegetation water content from remote sensing data: part 2. Validation and applications. Remote Sensing of Environment 82: 198207.
  • Ceccato P, Flasse S, Tarantola S, Jacquemoud S, Grégoire J-M. 2001. Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sensing of Environment 77: 2233.
  • Ceccato P, Gobron N, Flasse S, Pinty B, Tarantola S. 2002b. Designing a spectral index to estimate vegetation water content from remote sensing data: part 1. Theoretical approach. Remote Sensing of Environment 82: 188197.
  • Cescatti A, Zorer R. 2003. Structural acclimation and radiation regime of silver fir (Abies alba Mill.) shoots along a light gradient. Plant, Cell & Environment 26: 429442.
  • Chalker-Scott L. 1999. Environmental significance of anthocyanins in plant stress responses. Photochemistry and Photobiology 70: 19.
  • Chandrasekhar S. 1960. Radiative transfer. New York, NY, USA: Dover Publications Inc.
  • Chappelle EW, Kim MS, McMurtrey JE. 1992. Ratio Analysis of Reflectance Spectra (RARS) – an algorithm for the remote estimation of the concentrations of Chlorophyll-A, Chlorphyll-B, and carotenoids in soybean leaves. Remote Sensing of Environment 39: 239247.
  • Chen JM. 1996. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Canadian Journal of Remote Sensing 22: 229242.
  • Chen JM, Black TA. 1992. Foliage area and architecture of plant canopies from sunfleck size distributions. Agricultural and Forest Meteorology 60: 249266.
  • Chen JM, Cihlar J. 1995a. Quantifying the effect of canopy architecture on optical measurements of leaf area index using two gap size analysis methods. IEEE Transactions on Geoscience and Remote Sensing 33: 777787.
  • Chen JM, Cihlar J. 1995b. Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index. Applied Optics 34: 62116222.
  • Close DC, Beadle CL. 2006. Leaf angle responds to nitrogen supply in eucalypt seedlings. Is it a photoprotective mechanism? Tree Physiology 26: 743748.
  • Cohen Y, Pastor J. 1996. Interactions among nitrogen, carbon, plant shape, and photosynthesis. The American Naturalist 147: 847865.
  • Coops NC, Stone C. 2005. A comparison of field-based and modeled reflectance spectra from damaged Pinus radiata foliage. Australian Journal of Botany 53: 417429.
  • Curran PJ. 1989. Remote sensing of foliar chemistry. Remote Sensing of Environment 30: 271278.
  • Curran P, Kupiec JA. 1995. Imaging spectrometry: a new tool for ecology. In: DansonFM, PlummerSE, eds. Advances in environmental remote sensing. Chichester, UK: Wiley, 7188.
  • Darvishzadeh R, Skidmore A, Schlerf M, Atzberger C. 2008. Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland. Remote Sensing of Environment 112: 25922604.
  • Datt B. 1999. Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves. International Journal of Remote Sensing 20: 27412759.
  • Dawson TP, Curran PJ, Plummer SE. 1998. LIBERTY – modeling the effects of leaf biochemical concentration on reflectance spectra. Remote Sensing of Environment 65: 5060.
  • Demmig-Adams B, Adams WW III. 1996. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends in Plant Science 1: 2126.
  • Di Bella CM, Negri IJ, Posse G, Jaimes FR, Jobbágy EG, Garbulsky MF, Deregibus VA. 2009. Forage production of the Argentine Pampa region based on land use and long-lerm normalized difference vegetation index data. Rangeland Ecology and Management 62: 163170.
  • Ehleringer JR, Comstock J. 1989. Stress tolerance and adaptive variation in leaf absorptance and leaf angle. In: KeeleySC, ed. The California Chaparral: paradigms reexamined. Los Angeles, CA, USA: Museum of Los Angeles Science Series No. 34, 2124.
  • Ehleringer JR, Field CB. 1993. Scaling physiological processes: leaf to globe. San Diego, CA, USA: Academic Press.
  • Eitel JUH, Vierling LA, Long DS. 2010. Simultaneous measurements of plant structure and chlorophyll content in broadleaf saplings with a terrestrial laser scanner. Remote Sensing of Environment 114: 22292237.
  • Ellsworth DS, Reich PB. 1993. Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia 96: 169178.
  • Elvidge CD. 1990. Visible and near infrared reflectance characteristics of dry plant materials. International Journal of Remote Sensing 11: 17751795.
  • Enquist BJ, Economo EP, Huxman TE, Allen AP, Ignace DD, Gillooly JF. 2003. Scaling metabolism from organisms to ecosystems. Nature 423: 639642.
  • Evans JR. 1999. Leaf anatomy enables more equal access to light and CO2 between chloroplasts. New Phytologist 143: 93104.
  • Feild TS, Lee DW, Holbrook NM. 2001. Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of Red-Osier Dogwood. Plant Physiology 127: 566574.
  • Freitas SR, Mello MCS, Cruz CBM. 2005. Relationships between forest structure and vegetation indices in Atlantic Rainforest. Forest Ecology and Management 218: 353362.
  • Gamon JA, Field CB, Bilger W, Björkman Ö, Fredeen AL, Peñuelas J. 1990. Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies. Oecologia 85: 17.
  • Gamon J, Peñuelas J, Field CB. 1992. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment 41: 3544.
  • Gamon JA, Serrano L, Surfus JS. 1997. The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 112: 492501.
  • Gamon JA, Surfus JS. 1999. Assessing leaf pigment content and activity with a reflectometer. New Phytologist 143: 105117.
  • Ganapol BD, Johnson LF, Hammer PD, Hlavka CA, Peterson DL. 1998. LEAFMOD: a new within-leaf radiative transfer model. Remote Sensing of Environment 63: 182193.
  • Ganapol BD, Johnson LF, Hlavka CA, Peterson DL, Bond B. 1999. LCM2: a coupled leaf/canopy radiative transfer model. Remote Sensing of Environment 70: 153166.
  • Gao B-C. 1996. NDWI – a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment 58: 257266.
  • Gao B-C, Goetz AFH. 1995. Retrieval of equivalent water thickness and information related to biochemical components of vegetation canopies from AVIRIS data. Remote Sensing of Environment 52: 155162.
  • Gao B-C, Montes MJ, Davis CO, Goetz AFH. 2009. Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean. Remote Sensing Environment 113: S17S24.
  • Gates DM, Keegan HJ, Schleter JC, Weidner VR. 1965. Spectral properties of plants. Applied Optics 4: 1120.
  • Gausman HW, Allen WA, Escobar DE. 1974. Refractive index of plant cell walls. Applied Optics 13: 109111.
  • Gausman HW, Allen WA, Myers VI, Cardenas R. 1969. Reflectance and internal structure of cotton leaves, Gossypium hirsutum L. Agronomy Journal 61: 374376.
  • Gitelson AA, Chivkunova OB, Merzlyak MN. 2009. Nondestructive estimation of anthocyanins and chlorophylls in anthocyanic leaves. American Journal of Botany 96: 18611868.
  • Gitelson AA, Keydan GP, Merzlyak MN. 2006. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophysical Research Letters 33: L11402.
  • Gitelson AA, Merzlyak MN. 1994. Quantitative estimation of chlorophyll-a using reflectance spectra: experiments with autumn chestnut and maple leaves. Journal of Photochemical Phytobiology 22: 247252.
  • Gitelson AA, Merzlyak MN. 1997. Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing 18: 26912697.
  • González-Alonso F, Merino-de-Miguel S, Roldán-Zamarrón A, García-Gigorro S, Cuevas JM. 2006. Forest biomass estimation through NDVI composites. The role of remotely sensed data to assess Spanish forests as carbon sinks. International Journal of Remote Sensing 27: 54095415.
  • Gould KS, Quinn BD. 1999. Do anthocyanins protect leaves of New Zealand native species from UV-B? New Zealand Journal of Botany 37: 175178.
  • Govaerts YM, Jacquemoud S, Verstraete MM, Ustin SL. 1996. Three-dimensional radiation transfer modeling in a dicotyledon leaf. Applied Optics 35: 65856598.
  • Govindjee. 2002. A role for a light-harvesting antenna complex of photosystem II in photoprotection. The Plant Cell 14: 16631668.
  • Green DS, Erickson JE, Kruger EL. 2002. Foliar morphology and canopy nitrogen as predictors of light-use efficiency in terrestrial vegetation. Agricultural and Forest Meteorology 3097: 19.
  • Grime JP. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist 111: 11691194.
  • Gueymard C. 2004. The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Solar Energy 76: 423453.
  • Gutman GG. 1991. Vegetation indices from AVHRR: an update and future prospects. Remote Sensing of Environment 35: 121136.
  • Gutschick VP. 1999. Biotic and abiotic consequences of differences in leaf structure. New Phytologist 143: 318.
  • Hall FG, Shimabukuro YE, Huemmrich KF. 1995. Remote sensing of forest biophysical structure using mixture decomposition and geometric reflectance models. Ecological Applications 5: 9931013.
  • Hansen MC, Defries RS, Townshend JRG, Sohlberg R. 2000. Global land cover classification at 1 km spatial resolution using a classification tree approach. International Journal of Remote Sensing 21: 13311364.
  • Hedley J, Roelfsema C, Phinn SR. 2009. Efficient radiative transfer model inversion for remote sensing applications. Remote Sensing of Environment 113: 25272532.
  • Hilker T, Coops NC, Coggins SB, Wulder MA, Brown M, Black TA, Nesic Z, Lessard D. 2009. Detection of foliage conditions and disturbance from multi-angular high spectral resolution remote sensing. Remote Sensing of Environment 113: 421434.
  • Hilker T, Coops NC, Wulder MA, Black TA, Guy RD. 2008. The use of remote sensing in light use efficiency based models of gross primary production: a review of current status and future requirements. Science of the Total Environment 404: 411423.
  • Hollinger DY. 1996. Optimality and nitrogen allocation in a tree canopy. Tree Physiology 16: 627634.
  • Hollinger DY, Ollinger SV, Richardson AD, Meyers TP, Dail DB, Martin ME, Scott NA, Arkebauer TJ, Baldocchi DD, Clark KL et al. 2010. Albedo estimates for land surface models and support for a new paradigm based on foliage nitrogen concentration. Global Change Biology 16: 696710.
  • Hoque E, Remus G. 1996. Reflective light properties of tissue layers in beech (Fagus sylvatica L.) leaves. Photochemistry and Biology 63: 498506.
  • Houborg R, Boegh E. 2008. Mapping leaf chlorophyll and leaf area index using inverse and forward canopy reflectance modeling and SPOT reflectance data. Remote Sensing of Environment 112: 186202.
  • Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment 83: 195213.
  • Jacquemoud S, Bacour C, Poilvé H, Frangi J-P. 2000. Comparison of four radiative transfer models to simulate plant canopies reflectance: direct and inverse mode. Remote Sensing of Environment 74: 471481.
  • Jacquemoud S, Baret F. 1990. PROSPECT: a model of leaf optical properties spectra. Remote Sensing of Environment 34: 7591.
  • Jacquemoud S, Baret F, Andrieu B, Danson FM, Jaggard K. 1995. Extraction of vegetation biophysical parameters by inversion of the PROSPECT + SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors. Remote Sensing of Environment 52: 163172.
  • Jacquemoud S, Verhoef W, Baret F, Bacour C, Zarco-Tejada PJ, Asner GP, François C, Ustin S. 2009. PROSPECT + SAIL models: a review of use for vegetation characterization. Remote Sensing of Environment 113: S56S66.
  • Johnson DM, Smith WK, Vogelmann TC, Brodersen CR. 2005. Leaf architecture and direction of incident light influence mesophyll fluorescence profiles. American Journal of Botany 92: 14251431.
  • Justice CO, Vermote E, Townshend JRG, Defries R, Roy DP, Hall DK, Salomonson VV, Privette JL, Riggs G, Strahler A et al. 1998. The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research. IEEE Transactions on Geoscience and Remote Sensing 36: 12281249.
  • Kampe TU, Johnson BR, Kuester M, Keller M. 2010. NEON: the first continental-scale ecological observatory with airborne remote sensing of vegetation canopy biochemistry and structure. Journal of Applied Remote Sensing 4: 043510.
  • Kergoat L, Lafont S, Arneth A, Le Dantec V, Saugier B. 2008. Nitrogen controls plant canopy light-use efficiency in temperate and boreal ecosystems. Journal of Geophysical Research-Biogeosciences 113: G04017.
  • King DA. 1997. The functional significance of leaf angle in Eucalyptus. Australian Journal of Botany 45: 619639.
  • Knapp AK, Carter GA. 1998. Variability in leaf optical properties among 26 species from a broad range of habitats. American Journal of Botany 85: 940946.
  • Knipling EB. 1970. Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sensing of Environment 1: 155159.
  • Kokaly RF, Asner GP, Ollinger SV, Martin ME, Wessman CA. 2009. Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sensing of Environment 113: S78S91.
  • Kokaly RF, Clark RN. 1999. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment 67: 267287.
  • Kumar L, Schmidt K, Dury S, Skidmore A. 2001. Imaging spectrometry and vegetation science. In: van der MeerFD, de JongSM, eds. Imaging spectrometry. Dordrecht, the Netherlands: Kluwer Academic Publishers, 111155.
  • Lefsky MA, Cohen WB, Parker GG, Harding DJ. 2002. Lidar remote sensing for ecosystem studies. BioScience 52: 1930.
  • Li XW, Strahler AH. 1992. Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing. IEEE Transactions on Geoscience and Remote Sensing 30: 276292.
  • Liang S. 2007. Recent developments in estimating land surface biogeophysical variables from optical remote sensing. Progress in Physical Geography 31: 501516.
  • Lichtenthaler HK, Gitelson A, Lang M. 1996. Non-destructive determination of chlorophyll content of leaves of a green and an aurea mutant of tobacco by reflectance measurements. Journal of Plant Physiology 148: 483493.
  • Litton CM, Raich JW, Ryan MG. 2007. Carbon allocation in forest ecosystems. Global Change Biology 13: 20892109.
  • Longstreth DJ, Bolaños JA, Goddard RH. 1985. Photosynthetic rate and mesophyll surface area in expanding leaves of Alternanthera philoxeroides grown at two light levels. American Journal of Botany 72: 1419.
  • Martin ME, Aber JD. 1994. Analyses of forest foliage III: determining nitrogen, lignin and cellulose in fresh leaves using near infrared reflectance data. Journal of Near Infrared Spectroscopy 2: 2532.
  • Martin ME, Plourde LC, Ollinger SV, Smith M-L, McNeil BE. 2008. A generalizable method for remote sensing of canopy nitrogen across a wide range of forest ecosystems. Remote Sensing of Environment 112: 35113519.
  • Matson P, Johnson L, Billow C, Miller J, Pu R. 1994. Seasonal patterns and remote spectral estimation of canopy chemistry across the Oregon transect. Ecological Applications 4: 280298.
  • McNeil BE, Read JM, Driscoll CT. 2007. Foliar nitrogen responses to elevated atmospheric nitrogen deposition in nine temperate forest canopy species. Environmental Science & Technology 41: 51915197.
  • Merzlyak MN, Chivkunova OB, Melø TB, Naqvi KR. 2002. Does a leaf absorb radiation in the near infrared (780–900 nm) region? A new approach to quantifying optical reflection, absorption and transmission of leaves. Photosynthesis Research 72: 263270.
  • Merzlyak MN, Gitelson AA, Chivkunova OB, Rakitin VY. 1999. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiologia Plantarum 106: 135141.
  • Milton EJ, Schaepman ME, Anderson K, Kneubühler M, Fox N. 2009. Progress in field spectroscopy. Remote Sensing of Environment 113: S92S109.
  • Mirik M, Norland JE, Crabtree RL, Biondini ME. 2005. Hyperspectral one-meter-resolution remote sensing in Yellowstone National Park, Wyoming: II. Biomass. Rangeland Ecology and Management 58: 459465.
  • Mooney HA, Gulmon SL. 1979. Environmental and evolutionary constraints on the photosynthetic characteristics of higher plants. In: SolbrigOT, JainS, JohnsonGB, RavenPH, eds. Topics in plant population biology. New York, NY, USA: Columbia University Press, 316337.
  • Moorthy I, Miller JR, Noland TL. 2008. Estimating chlorophyll concentration in conifer needles with hyperspectral data: an assessment at the needle and canopy level. Remote Sensing of Environment 112: 28242838.
  • Myneni RB, Dong J, Tucker CJ, Kaufmann RK, Kauppi PE, Liski J, Zhou L, Alexeyev V, Hughes MK. 2001. A large carbon sink in the woody biomass of Northern forests. Proceedings of the National Academy of Sciences, USA 98: 1478414789.
  • Nagler PL, Glenn EP, Thompson TL, Huete A. 2004. Leaf area index and normalized difference vegetation index as predictors of canopy characteristics and light interception by riparian species on the Lower Colorado River. Agricultural and Forest Meteorology 125: 117.
  • NERC (Northeastern Ecosystem Research Cooperative) foliar chemistry database. 2010. USDA Forest Service Northern Research Station and University of New Hampshire Complex Systems Research Center. [WWW document].URL http://www.folchem.sr.unh.edu[accessed on 23 March 2010]
  • Niinemets Ü, Afas NA, Cescatti A, Pellis A, Ceulemans R. 2004. Petiole length and biomass investment in support modify light-interception efficiency in dense poplar plantations. Tree Physiology 234: 141154.
  • Niinemets Ü, Cescatti A, Lukjanova A, Tobias M, Truus L. 2002. Modification of light-acclimation of Pinus sylvestris shoot architecture by site fertility. Agricultural and Forest Meteorology 111: 121140.
  • Niinemets Ü, Fleck S. 2002. Petiole mechanics, leaf inclination, morphology, and investment in support in relation to light availability in the canopy of Liriodendron tulipifera. Oecologia 132: 2133.
  • Niinemets Ü, Lukjanova A. 2003. Total foliar area and average leaf age may be more strongly associated with branching frequency than with leaf longevity in temperate conifers. New Phytologist 158: 7589.
  • Nishida K, Nemani RR, Glassy JM, Running SW. 2003. Development of an evapotranspiration index from Aqua/MODIS for monitoring surface moisture status. IEEE Transactions on Geoscience and Remote Sensing 41: 493501.
  • Nobel PS, Zaragoza LJ, Smith WK. 1975. Relation between mesophyll surface area, photosynthetic rate, and illumination level during development for leaves of Plectranthus parviflorus Henckel. Plant Physiology 55: 10671070.
  • Norris KH, Barnes RF, Moore JE, Shenk JS. 1976. Predicting forage quality by infrared reflectance spectroscopy. Journal of Animal Science 43: 889897.
  • National Research Council (NRC). 2007. Earth science and applications from space: national imperatives for the next decade and beyond. Washington, DC, USA: National Academies Press.
  • Ollinger SV, Aber JD, Reich PB, Freuder RJ. 2002. Interactive effects of nitrogen deposition, tropospheric ozone, elevated CO2 and land use history on the carbon dynamics of northern hardwood forests. Global Change Biology 8: 545562.
  • Ollinger SV, Richardson AD, Martin ME, Hollinger DY, Frolking SE, Reich PB, Plourde LC, Katul GG, Munger JW, Oren R et al. 2008. Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: functional relations and potential climate feedbacks. Proceedings of the National Academy of Sciences, USA 105: 1933519340.
  • Ollinger SV, Smith M-L. 2005. Net primary production and canopy nitrogen in a temperate forest landscape: an analysis using imaging spectroscopy, modeling and field data. Ecosystems 8: 760778.
  • Ourcival JM, Joffre R, Rambal S. 1999. Exploring the relationships between reflectance and anatomical and biochemical properties in Quercus ilex leaves. New Phytologist 143: 351364.
  • Parker GG, Harmon ME, Lefsky MA, Chen J, Van Pelt R, Weiss SB, Thomas SC, Winner WE, Shaw DC, Franklin JF. 2004. Three-dimensional structure of an old-growth Pseudotsuga-tsuga canopy and its implications for radiation balance, microclimate, and gas exchange. Ecosystems 7: 440453.
  • Paruelo JM, Epstein HE, Lauenroth WK, Burke IC. 1997. ANPP estimates from NDVI for the central grassland region of the United States. Ecology 78: 953958.
  • Pearson RL, Miller LD. 1972. Remote spectral measurements as a method for determining plant cover. International Biological Program Technical Report No. 167. Fort Collins, CO, USA: Colorado State University.
  • Peñuelas J, Baret F, Filella I. 1995. Semiempirical indexes to assess carotenoids chlorophyll-a ratio from leaf spectral reflectance. Photosynthetica 31: 221230.
  • Peñuelas J, Gamon JA, Fredeen AL, Merino J, Field CB. 1994. Reflectance indexes associated with physiological changes in nitrogen-limited and water-limited sunflower leaves. Remote Sensing of Environment 48: 135146.
  • Peñuelas J, Piñol J, Ogaya R, Filella I. 1997. Estimation of plant water concentration by the reflectance water index WI (R900/R970). International Journal of Remote Sensing 18: 28692875.
  • Plourde LC, Ollinger SV, Smith M-L, Martin ME. 2007. Estimating species abundance in a northern temperate forest using spectral mixture analysis. Photogrammetric Engineering & Remote Sensing 73: 829840.
  • Posada JM, Lechowicz MJ, Kitajima K. 2009. Optimal photosynthetic use of light by tropical tree crowns achieved by adjustment of individual leaf angles and nitrogen content. Annals of Botany 103: 795805.
  • Potter CS. 1999. Terrestrial biomass and the effects of deforestation on the global carbon cycle: results from a model of primary production using satellite observations. BioScience 49: 769778.
  • Rautiainen M, Mõtus M, Stenberg P, Ervasti S. 2008. Crown envelope shape measurements and models. Silva Fennica 42: 1933.
  • Rautiainen M, Stenberg P. 2005. Application of photon recollision probability in coniferous canopy reflectance simulations. Remote Sensing of Environment 96: 98107.
  • Rautiainen M, Stenberg P, Nilson T, Kuusk A. 2004. The effect of crown shape on the reflectance of coniferous stands. Remote Sensing of Environment 89: 4152.
  • Reddy GS, Rao CLN, Venkataratnam L, Rao PVK. 2001. Influence of plant pigments on spectral reflectance of maize, groundnut and soybean grown in semi-arid environments. International Journal of Remote Sensing 22: 33733380.
  • Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD. 1999. Generality of leaf trait relationships: a test across six biomes. Ecology 806: 19551969.
  • Reich PB, Kloeppel BD, Ellsworth DS, Walters MB. 1995. Different photosynthesis-nitrogen relations in deciduous hardwood and evergreen coniferous tree species. Oecologia 104: 2430.
  • Reich PB, Walters MB, Ellsworth DS. 1997. From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences, USA 94: 1373013734.
  • Roberts DA, Ustin SL, Ogunjemiyo S, Greenberg J, Dobrowski SZ, Chen J, Hinckley TM. 2004. Spectral and structural measures of northwest forest vegetation at leaf to landscape scales. Ecosystems 7: 545562.
  • Rochdi N, Fernandes R, Chelle M. 2006. An assessment of needles clumping within shoots when modeling radiative transfer within homogeneous canopies. Remote Sensing of Environment 102: 116134.
  • Rundquist BC. 2002. The influence of canopy green vegetation fraction on spectral measurements over native tallgrass prairie. Remote Sensing of Environment 81: 129135.
  • Running SW, Loveland TR, Pierce LL, Nemani RR, Hunt ER Jr. 1995. A remote sensing based vegetation classification logic for global land cover analysis. Remote Sensing of Environment 51: 3948.
  • Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M, Hashimoto H. 2004. A continuous satellite-derived measure of global terrestrial primary production. BioScience 54: 547560.
  • Schaaf CB, Gao F, Strahler AH, Lucht W, Li X, Tsang T, Strugnell NC, Zhang X, Jin Y, Muller J-P et al. 2002. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sensing of Environment 83: 135148.
  • Schlerf M, Atzberger C. 2006. Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data. Remote Sensing of Environment 100: 281294.
  • Serrano L, Ustin SL, Roberts DA, Gamon JA, Peñuelas J. 2000. Deriving water content of chaparral vegetation from AVIRIS data. Remote Sensing of Environment 74: 570581.
  • Sims DA, Gamon JA. 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment 81: 337354.
  • Slaton MR, Hunt ER Jr, Smith WK. 2001. Estimating near-infrared leaf reflectance from leaf structural characteristics. American Journal of Botany 88: 278284.
  • Smith M-L, Martin ME, Plourde L, Ollinger SV. 2003. Analysis of hyperspectral data for estimation of temperate forest canopy nitrogen concentration: comparison between an airborne (AVIRIS) and a spaceborne (Hyperion) sensor. IEEE Transactions on Geoscience and Remote Sensing 41: 13321337.
  • Smith M-L, Ollinger SV, Martin ME, Aber JD, Hallett RA, Goodale CL. 2002. Direct estimation of aboveground forest productivity through hyperspectral remote sensing of canopy nitrogen. Ecological Applications 12: 12861302.
  • Smith WK, Vogelmann TC, DeLucia EH, Bell DT, Shepherd KA. 1997. Leaf form and photosynthesis. BioScience 47: 785793.
  • Smolander S, Stenberg P. 2003. A method to account for shoot scale clumping in coniferous canopy reflectance models. Remote Sensing of Environment 88: 363373.
  • Smolander S, Stenberg P. 2005. Simple parameterizations of the radiation budget of uniform broadleaved and coniferous canopies. Remote Sensing of Environment 94: 355363.
  • Stimson HC, Breshears DD, Ustin SL, Kefauver SC. 2005. Spectral sensing of foliar water conditions in two co-occurring conifer species: Pinus edulis and Juniperus monosperma. Remote Sensing of Environment 96: 108118.
  • Strahler AH, Jupp DLB, Woodcock CE, Schaaf CB, Yao T, Zhao F, Yang XY, Lovell J, Culvenor D, Newnham G et al. 2008. Retrieval of forest structural parameters using a ground-based lidar instrument (Echidna (R)). Canadian Journal of Remote Sensing 34: S426S440.
  • Takahashi K. 1996. Plastic response of crown architecture to crowding in understorey trees of two co-dominating conifers. Annals of Botany 77: 159164.
  • Tari DB, Gazanchian A, Pirdashti HA, Nasiri M. 2009. Flag leaf morphophysiological response to different agronomical treatments in a promising line of rice (Oryza sativa L.). American-Eurasian Journal of Agricultural & Environmental Sciences 5: 403408.
  • Thenkabail PS, Smith RB, DePauw E. 2000. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment 71: 158182.
  • Thomas JR, Oerther GF. 1972. Estimating nitrogen content of sweet pepper leaves by reflectance measurements. Agronomy Journal 64: 1113.
  • Treuhaft RN, Law BE, Asner GP. 2004. Forest attributes from radar interferometric structure and its fusion with optical remote sensing. BioScience 54: 561571.
  • Tucker CJ. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8: 127150.
  • Tucker CJ, Sellers PJ. 1986. Satellite remote sensing of primary production. International Journal of Remote Sensing 7: 13951416.
  • Turner DP, Cohen WB, Kennedy RE, Fassnacht KS, Briggs JM. 1999. Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites. Remote Sensing of Environment 70: 5268.
  • USDA Natural Resources Conservation Service (NRCS). 2010. The PLANTS database. Baton Rouge, LA 70874-4490, USA: National Plant Data Center. [WWW document].URL http://plants.usda.gov [accessed on 23 March 2010]
  • Ustin SL, Gamon JA. 2010. Remote sensing of plant functional types. New Phytologist 186: 795816.
  • Ustin SL, Gitelson AA, Jacquemoud S, Schaepman M, Asner GP, Gamon JA, Zarco-Tejada P. 2009. Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sensing of Environment 113: S67S77.
  • Ustin SL, Roberts DA, Gamon JA, Asner GP, Green RO. 2004. Using imaging spectroscopy to study ecosystem processes and properties. BioScience 54: 523534.
  • Valiente-Banuet A, Verdú M, Valladares F, García-Fayos P. 2010. Functional and evolutionary correlations of steep leaf angles in the mexical shrubland. Oecologia 163: 2533.
  • Verhoef W. 1984. Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sensing of Environment 16: 125141.
  • Vogelmann TC, Martin G. 1993. The functional significance of palisade tissue: penetration of directional versus diffuse light. Plant, Cell & Environment 16: 6572.
  • Walcroft AS, Brown KJ, Schuster WSF, Tissue DT, Turnbull MH, Griffin KL, Whitehead D. 2005. Radiative transfer and carbon assimiliation in relation to canopy architecture, foliage area distribution and clumping in a mature temperate rainforest canopy in New Zealand. Agricultural and Forest Meteorology 135: 326339.
  • Weiss M, Baret F. 1999. Evaluation of canopy biophysical variable retrieval performances from the accumulation of large swath satellite data. Remote Sensing of Environment 70: 293306.
  • Wessman CA, Aber JD, Peterson DL, Melillo JM. 1988. Remote sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystems. Nature 335: 154156.
  • Wiens JA, Stralberg D, Jongsomjit D, Howell CA, Snyder MA. 2009. Niches, models, and climate change: assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences, USA 106: 1972919736.
  • Woolley JT. 1971. Reflectance and transmittance of light by leaves. Plant Physiology 47: 656662.
  • Woolley JT. 1975. Refractive index of soybean leaf cell walls. Plant Physiology 55: 172174.
  • Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N et al. 2005. Assessing the generality of global leaf trait relationships. New Phytologist 166: 485496.
  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch A, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M et al. 2004. The worldwide leaf economics spectrum. Nature 428: 821827.
  • Yoder BJ, Pettigrew-Crosby RE. 1995. Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2,500 nm) at leaf and canopy scales. Remote Sensing of Environment 53: 199211.
  • Zheng G, Moskal LM. 2009. Retrieving leaf area index (LAI) using remote sensing: theories, methods and sensors. Sensors 9: 27192745.
  • Zygielbaum AI, Gitelson AA, Arkebauer TJ, Rundquist DC. 2009. Non-destructive detection of water stress and estimation of relative water content in maize. Geophysical Research Letters 36: L12403.