SEARCH

SEARCH BY CITATION

References

  • Akiyama K, Ogasawara S, Ito S, Hayashi H. 2010. Structural requirements of strigolactones for hyphal branching in AM fungi. Plant and Cell Physiology 51: 11041117.
  • Beveridge CA, Kyozuka J. 2010. New genes in the strigolactone-related shoot branching pathway. Current Opinion in Plant Biology 13: 3439.
  • Cook CE, Whichard LP, Turner B, Wall ME, Egley GH. 1966. Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154: 11891190.
  • Dharmasiri N, Dharmasiri S, Estelle M. 2005. The F-box protein TIR1 is an auxin receptor. Nature 435: 441445.
  • Dun EA, Brewer PB, Beveridge CA. 2009. Strigolactones: discovery of the elusive shoot branching hormone. Trends in Plant Science 14: 364372.
  • Gilroy S, Jones DL. 2000. Through form to function: root hair development and nutrient uptake. Trends in Plant Science 5: 5660.
  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC et al. 2008. Strigolactone inhibition of shoot branching. Nature 455: 189194.
  • Jain A, Poling MD, Karthikeyan AS, Blakeslee JJ, Peer WA, Titapiwatanakun B, Murphy AS, Raghothama KG. 2007. Differential effects of sucrose and auxin on localized Pi-deficiency induced modulation of different traits of root system architecture in Arabidopsis. Plant Physiology 144: 232247.
  • Johnson AW, Gowda G, Hassanali A, Knox J, Monaco S, Razavi Z, Rosebery G. 1981. The preparation of synthetic analogues of strigol. Journal of the Chemical Society, Perkin Transactions 1: 17341743.
  • Jones AR, Kramer EM, Knox K, Swarup R, Bennett MJ, Lazarus CM, Leyser HM, Grierson CS. 2009. Auxin transport through nonhair cells sustains root-hair development. Nature Cell Biology 11: 7884.
  • Kapulnik Y, Delaux P-M, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C, Séjalon-Delmas N, Combier J-P, Bécard G, Belausov E et al. 2011a. Strigolactones affect lateral root formation and root hair elongation in Arabidopsis. Planta 233: 209216.
  • Kapulnik Y, Resnick N, Mayzlish-Gati E, Kaplan Y, Wininger S, Bhattacharya C, Hershenhorn J, Koltai H. 2011b. Ethylene is epistatic to strigolactones whereas auxin pathway may converge with that of strigolactones to confer root-hair elongation in Arabidopsis. Journal of Experimental Botany. doi: 10.1093/jxb/erq464.
  • Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, Verstappen F, Leyser O, Bouwmeester HJ, Ruyter-spira C. 2011. Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in non-AM host Arabidopsis thaliana. Plant Physiology 155: 974987.
  • Koltai H, Dor E, Hershenhorn J, Joel DM, Weininger S, Lekalla S, Shealtiel H, Bahattacharya C, Eliahu E, Resnick N et al. 2010. Strigolactones’ effect on root growth and root-hair elongation may be mediated by auxin-efflux carriers. Journal of Plant Growth Regulation 29: 129136.
  • Leyser O. 2009. The control of shoot branching: an example of plant information processing. Plant, Cell & Environment 32: 694703.
  • Liang J, Zhao L, Challis R, Leyser O. 2010. Strigolactone regulation of shoot branching in chrysanthemum (Dendranthema grandiflorum). Journal of Experimental Botany 61: 30693078.
  • López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L. 2003. The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology 6: 280287.
  • López-Ráez JA, Charnikhova T, Gómez-Roldán V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pages V, Bécard G, Mulder P et al. 2008. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytologist 178: 863874.
  • Matusova R, Rani K, Verstappen FW, Franssen MC, Beale MH, Bouwmeester HJ. 2005. The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiology 139: 920934.
  • Osmont KS, Sibout R, Hardtke CS. 2007. Hidden branches: developments in root system architecture. Annual Review of Plant Biology 58: 93113.
  • Pech JC, Bouzayen M, Latche A. 2010. Ethylene biosynthesis. In: Davis PJ, ed. Plant hormones. Biosynthesis, Signal Transduction, Action! Revised, 3rd edn. Dordrecht, the Netherlands: Springer, 115136.
  • Péret B, De Rybel B, Casimiro I, Benková E, Swarup R, Laplaze L, Beeckman T, Bennett MJ. 2009. Arabidopsis lateral root development: an emerging story. Trends in Plant Science 14: 399408.
  • Pérez-Torres CA, López-Bucio J, Cruz-Ramírez A, Ibarra-Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L. 2008. Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 20: 32583272.
  • Pitts RJ, Cernac A, Estelle M. 1998. Auxin and ethylene promote root hair elongation in Arabidopsis. Plant Journal 16: 553560.
  • Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L, de Ruijter N, Cardoso C, Lopez-Raez JA, Matusova R, Bours R et al. 2011. Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another below-ground role for strigolactones? Plant Physiology 155: 721734.
  • Stepanova AN, Alonso JM. 2009. Ethylene signaling and response: where different regulatory modules meet. Current Opinion in Plant Biology 12: 548555.
  • Stirnberg P, Furner IJ, Leyser O. 2007. MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant Journal 50: 8094.
  • Stirnberg P, Van De Sande K, Leyser HMO. 2002. MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129: 11311141.
  • Sugimoto Y, Ali AM, Yabuta S, Kinoshita H, Inanaga S, Itai A. 2003. Germination strategy of Striga hermonthica involves regulation of ethylene biosynthesis. Physiologia Plantarum 119: 137145.
  • Umehara M, Hanada A, Magome H, Takeda-Kamiya N, Yamaguchi S. 2010. Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant & Cell Physiology 51: 11181126.
  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K et al. 2008. Inhibition of shoot branching by new terpenoid plant hormones. Nature 455: 195200.
  • Vogel JT, Walter MH, Giavalisco P, Lytovchenko A, Kohlen W, Charnikhova T, Simkin AJ, Goulet C, Strack D, Bouwmeester HJ et al. 2010. SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. Plant Journal 61: 300311.
  • Xie X, Yoneyama K, Yoneyama K. 2010. The strigolactone story. Annual Review of Phytopathology 48: 93117.
  • Yoneyama K, Xie X, Kusumoto D, Sekimoto H, Sugimoto Y, Takeuchi Y, Yoneyama K. 2007. Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227: 125132.