SEARCH

SEARCH BY CITATION

References

  • Baudouin E, Pieuchot L, Engler G, Pauly N, Puppo A. 2006. Nitric oxide is formed in Medicago truncatula–Sinorhizobium meliloti functional nodules. Molecular Plant–Microbe Interactions 19: 970975.
  • Beligni MV, Lamattina L. 2000. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210: 215221.
  • Benedito VA, Torres-Jerez I, Murray JD, Andriankaja A, Allen S, Kakar K, Wandrey M, Verdier J, Zuber H, Ott T et al. 2008. A gene expression atlas of the model legume Medicago truncatula. Plant Journal 55: 504513.
  • Besson-Bard A, Pugin A, Wendehenne D. 2008. New insights into nitric oxide signaling in plants. Annual Review of Plant Biology 59: 2139.
  • Bethke PC, Libourel IG, Jones RL. 2006. Nitric oxide reduces seed dormancy in Arabidopsis. Journal of Experimental Botany 57: 517526.
  • Boccara M, Mills CE, Zeier J, Anzi C, Lamb C, Poole RK, Delledonne M. 2005. Flavohaemoglobin HmpX from Erwinia chrysanthemi confers nitrosative stress tolerance and affects the plant hypersensitive reaction by intercepting nitric oxide produced by the host. Plant Journal 43: 226237.
  • Boisson-Dernier A, Chabaud M, Garcia F, Becard G, Rosenberg C, Barker DG. 2001. Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Molecular Plant–Microbe Interactions 14: 695700.
  • Bringhurst RM, Cardon ZG, Gage DJ. 2001. Galactosides in the rhizosphere: utilization by Sinorhizobium meliloti and development of a biosensor. Proceedings of the National Academy of Sciences, USA 98: 45404545.
  • de Bruijn FJ, Rossbach S, Bruand C, Parrish JR. 2006. A highly conserved Sinorhizobium meliloti operon is induced microaerobically via the FixLJ system and by nitric oxide (NO) via NnrR. Environmental Microbiology 8: 13711381.
  • Cebolla A, Vinardell JM, Kiss E, Olah B, Roudier F, Kondorosi A, Kondorosi E. 1999. The mitotic inhibitor ccs52 is required for endoreduplication and ploidy-dependent cell enlargement in plants. EMBO Journal 18: 44764484.
  • Charon C, Johansson C, Kondorosi E, Kondorosi A, Crespi M. 1997. enod40 induces dedifferentiation and division of root cortical cells in legumes. Proceedings of the National Academy of Sciences, USA 94: 89018906.
  • Correa-Aragunde N, Graziano M, Chevalier C, Lamattina L. 2006. Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato. Journal of Experimental Botany 57: 581588.
  • Correa-Aragunde N, Graziano M, Lamattina L. 2004. Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218: 900905.
  • Cueto M, Hernandez-Perera O, Martin R, Bentura ML, Rodrigo J, Lamas S, Golvano MP. 1996. Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus. FEBS Letters 398: 159164.
  • Davidson SK, Koropatnick TA, Kossmehl R, Sycuro L, McFall-Ngai MJ. 2004. NO means ‘yes’ in the squid–vibrio symbiosis: nitric oxide (NO) during the initial stages of a beneficial association. Cellular Microbiology 6: 11391151.
  • Delledonne M. 2005. NO news is good news for plants. Current Opinion in Plant Biology 8: 390396.
  • Delledonne M, Xia Y, Dixon RA, Lamb C. 1998. Nitric oxide functions as a signal in plant disease. Nature 394: 585588.
  • Ditta G, Schmidhauser T, Yakobson E, Lu P, Liang XW, Finlay DR, Guiney D, Helinski DR. 1985. Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression. Plasmid 13: 149153.
  • Durner J, Wendehenne D, Klessig DF. 1998. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proceedings of the National Academy of Sciences, USA 95: 1032810333.
  • Ferrarini A, De Stefano M, Baudouin E, Pucciariello C, Polverari A, Puppo A, Delledonne M. 2008. Expression of Medicago truncatula genes responsive to nitric oxide in pathogenic and symbiotic conditions. Molecular Plant–Microbe Interactions 21: 781790.
  • Figurski DH, Helinski DR. 1979. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proceedings of the National Academy of Sciences, USA 76: 16481652.
  • Fournier J, Timmers AC, Sieberer BJ, Jauneau A, Chabaud M, Barker DG. 2008. Mechanism of infection thread elongation in root hairs of Medicago truncatula and dynamic interplay with associated rhizobial colonization. Plant Physiology 148: 19851995.
  • Frugier F, Kosuta S, Murray JD, Crespi M, Szczyglowski K. 2008. Cytokinin: secret agent of symbiosis. Trends in Plant Science 13: 115120.
  • Gardner PR, Gardner AM, Martin LA, Salzman AL. 1998. Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proceedings of the National Academy of Sciences, USA 95: 1037810383.
  • Gilberthorpe NJ, Lee ME, Stevanin TM, Read RC, Poole RK. 2007. NsrR: a key regulator circumventing Salmonella enterica serovar typhimurium oxidative and nitrosative stress in vitro and in IFN-gamma-stimulated J774.2 macrophages. Microbiology 153: 17561771.
  • Gonzalez-Rizzo S, Crespi M, Frugier F. 2006. The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18: 26802693.
  • Grun S, Lindermayr C, Sell S, Durner J. 2006. Nitric oxide and gene regulation in plants. Journal of Experimental Botany 57: 507516.
  • Gusarov I, Nudler E. 2005. NO-mediated cytoprotection: instant adaptation to oxidative stress in bacteria. Proceedings of the National Academy of Sciences, USA 102: 1385513860.
  • He Y, Tang RH, Hao Y, Stevens RD, Cook CW, Ahn SM, Jing L, Yang Z, Chen L, Guo F et al. 2004. Nitric oxide represses the Arabidopsis floral transition. Science 305: 19681971.
  • Horchani F, Prevot M, Boscari A, Evangelisti E, Meilhoc E, Bruand C, Raymond P, Boncompagni E, Aschi-Smiti S, Puppo A et al. 2011. Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules. Plant Physiology 155: 10231036.
  • Igamberdiev AU, Hill RD. 2004. Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. Journal of Experimental Botany 55: 24732482.
  • Ignarro LJ. 2000. Nitric oxide. Biology and pathobiology. San Diego, CA, USA; London, UK: Academic Press.
  • Kojima H, Nakatsubo N, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y, Nagano T. 1998. Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Analytical Chemistry 70: 24462453.
  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM 2nd, Peterson KM. 1995. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166: 175176.
  • Lohar DP, Sharopova N, Endre G, Penuela S, Samac D, Town C, Silverstein KA, VandenBosch KA. 2006. Transcript analysis of early nodulation events in Medicago truncatula. Plant Physiology 140: 221234.
  • Long SR. 2001. Genes and signals in the Rhizobium–legume symbiosis. Plant Physiology 125: 6972.
  • Mathieu C, Moreau S, Frendo P, Puppo A, Davies MJ. 1998. Direct detection of radicals in intact soybean nodules: presence of nitric oxide-leghemoglobin complexes. Free Radical Biology and Medicine 24: 12421249.
  • McLean S, Bowman LA, Poole RK. 2010. Peroxynitrite stress is exacerbated by flavohaemoglobin-derived oxidative stress in Salmonella typhimurium and is relieved by nitric oxide. Microbiology 156: 35563565.
  • Meakin GE, Bueno E, Jepson B, Bedmar EJ, Richardson DJ, Delgado MJ. 2007. The contribution of bacteroidal nitrate and nitrite reduction to the formation of nitrosylleghaemoglobin complexes in soybean root nodules. Microbiology 153: 411419.
  • Meilhoc E, Cam Y, Skapski A, Bruand C. 2010. The response to nitric oxide of the nitrogen-fixing symbiont Sinorhizobium meliloti. Molecular Plant–Microbe Interactions 23: 748759.
  • Miller JH 1972. Experiments in molecular genetics. Cold Spring Harbor, New York, NY, USA: Cold Spring Harbor Laboratory, 352355.
  • Mishina TE, Lamb C, Zeier J. 2007. Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis. Plant, Cell & Environment 30: 3952.
  • Moreau M, Lee GI, Wang Y, Crane BR, Klessig DF. 2008. AtNOS/AtNOA1 is a functional Arabidopsis thaliana cGTPase and not a nitric-oxide synthase. The Journal of Biological Chemistry 283: 3295732967.
  • Mur LAJ, Carver TLW, Prats E. 2006. NO way to live; the various roles of nitric oxide in plant–pathogen interactions. Journal of Experimental Botany 57: 489505.
  • Nagata M, Murakami E, Shimoda Y, Shimoda-Sasakura F, Kucho K, Suzuki A, Abe M, Higashi S, Uchiumi T. 2008. Expression of a class 1 hemoglobin gene and production of nitric oxide in response to symbiotic and pathogenic bacteria in Lotus japonicus. Molecular Plant–Microbe Interactions 21: 11751183.
  • Neill SJ, Desikan R, Clarke A, Hancock JT. 2002. Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiology 128: 1316.
  • Neill SJ, Desikan R, Hancock JT. 2003. Nitric oxide signalling in plants. New Phytologist 159: 1135.
  • Oke V, Long SR. 1999. Bacterial genes induced within the nodule during the Rhizobium–legume symbiosis. Molecular Microbiology 32: 837849.
  • Oldroyd GE, Downie JA. 2008. Coordinating nodule morphogenesis with rhizobial infection in legumes. Annual Review of Plant Biology 59: 519546.
  • Pauly N, Ferrari C, Andrio E, Marino D, Piardi S, Brouquisse R, Baudouin E, Puppo A. 2010. MtNOA1/RIF1 modulates Medicago truncatula–Sinorhizobium meliloti nodule development without affecting its nitric oxide content. Journal of Experimental Botany 62: 939948.
  • Pauly N, Pucciariello C, Mandon K, Innocenti G, Jamet A, Baudouin E, Herouart D, Frendo P, Puppo A. 2006. Reactive oxygen and nitrogen species and glutathione: key players in the legume–Rhizobium symbiosis. Journal of Experimental Botany 57: 17691776.
  • Pichon M, Journet EP, Dedieu A, de Billy F, Truchet G, Barker DG. 1992. Rhizobium meliloti elicits transient expression of the early nodulin gene ENOD12 in the differentiating root epidermis of transgenic alfalfa. Plant Cell 4: 11991211.
  • Pii Y, Crimi M, Cremonese G, Spena A, Pandolfini T. 2007. Auxin and nitric oxide control indeterminate nodule formation. BMC Plant Biology 7: 21.
  • Pobigaylo N, Szymczak S, Nattkemper TW, Becker A. 2008. Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants. Molecular Plant–Microbe Interactions 21: 219231.
  • Poole RK, Hughes MN. 2000. New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress. Molecular Microbiology 36: 775783.
  • Quandt HJ, Puhler A, Broer I. 1993. Transgenic root-nodules of Vicia hirsuta– a fast and efficient system for the study of gene-expression in indeterminate-type nodules. Molecular Plant–Microbe Interactions 6: 699706.
  • del Rio LA, Corpas FJ, Barroso JB. 2004. Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry 65: 783792.
  • Rosenberg C, Boistard P, Dénarié J, Casse-Delbart F. 1981. Genes controlling early and late functions in symbiosis are located on a megaplasmid in Rhizobium meliloti. Molecular and General Genetics 184: 326333.
  • Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning: a laboratory manual, 2nd edn. New York, NY, USA: Cold Spring Harbor Laboratory Press.
  • Shimoda Y, Nagata M, Suzuki A, Abe M, Sato S, Kato T, Tabata S, Higashi S, Uchiumi T. 2005. Symbiotic Rhizobium and nitric oxide induce gene expression of non-symbiotic hemoglobin in Lotus japonicus. Plant and Cell Physiology 46: 99107.
  • Shimoda Y, Shimoda-Sasakura F, Kucho K, Kanamori N, Nagata M, Suzuki A, Abe M, Higashi S, Uchiumi T. 2009. Overexpression of class 1 plant hemoglobin genes enhances symbiotic nitrogen fixation activity between Mesorhizobium loti and Lotus japonicus. Plant Journal 57: 254263.
  • Stevanin TM, Poole RK, Demoncheaux EA, Read RC. 2002. Flavohemoglobin Hmp protects Salmonella enterica serovar typhimurium from nitric oxide-related killing by human macrophages. Infection and Immunity 70: 43994405.
  • Svensson L, Poljakovic M, Save S, Gilberthorpe N, Schon T, Strid S, Corker H, Poole RK, Persson K. 2010. Role of flavohemoglobin in combating nitrosative stress in uropathogenic Escherichia coli– implications for urinary tract infection. Microbial Pathogenesis 49: 5966.
  • Tun NN, Livaja M, Kieber JJ, Scherer GF. 2008. Zeatin-induced nitric oxide (NO) biosynthesis in Arabidopsis thaliana mutants of NO biosynthesis and of two-component signaling genes. New Phytologist 178: 515531.
  • Van de Velde W, Guerra JC, De Keyser A, De Rycke R, Rombauts S, Maunoury N, Mergaert P, Kondorosi E, Holsters M, Goormachtig S. 2006. Aging in legume symbiosis. A molecular view on nodule senescence in Medicago truncatula. Plant Physiology 141: 711720.
  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3: RESEARCH0034.
  • Vernoud V, Journet EP, Barker DG. 1999. MtENOD20, a Nod factor-inducible molecular marker for root cortical cell activation. Molecular Plant–Microbe Interactions 12: 604614.
  • Vinardell JM, Fedorova E, Cebolla A, Kevei Z, Horvath G, Kelemen Z, Tarayre S, Roudier F, Mergaert P, Kondorosi A et al. 2003. Endoreduplication mediated by the anaphase-promoting complex activator CCS52A is required for symbiotic cell differentiation in Medicago truncatula nodules. Plant Cell 15: 20932105.
  • Wang Y, Dunn AK, Wilneff J, McFall-Ngai MJ, Spiro S, Ruby EG. 2010. Vibrio fischeri flavohemoglobin protects against nitric oxide during initiation of the squid–Vibrio symbiosis. Molecular Microbiology 78: 903915.