SEARCH

SEARCH BY CITATION

References

  • Abe I. 2007. Enzymatic synthesis of cyclic triterpenes. Natural Product Reports 24: 13111331.
  • Abe I, Prestwich GD. 1995. Identification of the active site of vertebrate oxidosqualene cyclase. Lipids 30: 231234.
  • Birney E, Clamp M, Durbin R. 2004. GeneWise and GenomeWise. Genome Research 14: 988995.
  • Bringe K, Schumacher CFA, Schmitz-Eiberger M, Steiner U, Oerke EC. 2005. Ontogenetic variation in chemical and physical characters of adaxial leaf surfaces. Phytochemistry 67: 161170.
  • Chappell J. 2002. The genetics and molecular genetics of terpene and sterol origami. Current Opinion in Plant Biology 5: 151157.
  • Chelly J, Kahn A. 1994. RT-PCR and mRNA quantification. In: Mullis KB, Ferre F, Gibbs RA, eds. The polymerase chain reaction. Boston, MA, USA: Birkhauser, 97109.
  • Crombie WML, Crombie L. 1986. Distribution of avenacins A-1, A-2, B-1 and B-2 in oat roots – their fungicidal activity towards take-all fungus. Phytochemistry 25: 20692073.
  • Crombie WML, Crombie L, Green JB, Lucas JA. 1986. Pathogenicity of take-all fungus to oats: its relationship to the concentration and detoxification of the 4 avenacins. Phytochemistry 25: 2075.
  • Delis C, Krokida A, Georgiou S, Peña-Rodríguez LM, Kavroulakis N, Ioannou E, Roussis V, Osbourn AE, Papadopoulou K. 2011. Role of lupeol synthase in Lotus japonicus nodule formation. New Phytologist 189: 335346.
  • Edgar RC. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5: 113.
  • Feil C, Süssmuth R, Jung G, Poralla K. 1996. Site-directed mutagenesis of putative active site residues in squalene-hopene cyclase. European Journal of Biochemistry 242: 5155.
  • Field B, Osbourn AE. 2008. Metabolic diversification – independent assembly of operon-like gene clusters in different plants. Science 320: 543547.
  • Francis G, Kerem Z, Makkar HPS, Becker K. 2002. The biological action of saponins in animal systems: a review. British Journal of Nutrition 88: 587605.
  • Frey M, Chomet P, Glawischnig E, Stettner C, Grün S, Winklmair A, Eisenreich W, Bacher A, Meeley RB, Briggs SP et al. 1997. Analysis of a chemical plant defense mechanism in grasses. Science 277: 696699.
  • Grncarevic M, Radler F. 1971. A review of the surface lipids of grapes and their importance in the drying process. American Journal of Enology and Viticulture 22: 8086.
  • Güçlü-Üstündag Ö, Mazza G. 2007. Saponins: properties, applications and processing. Critical Reviews in Food Science and Nutrition 47: 231258.
  • Haralampidis K, Bryan G, Qi X, Papadopoulou K, Bakht S, Melton R, Osbourn A. 2001a. A new class of oxidosqualene cyclases directs synthesis of antimicrobial phytoprotectants in monocots. Proceedings of the National Academy of Sciences, USA 98: 1343113436.
  • Haralampidis K, Trojanowska M, Osbourn AE. 2001b. Biosynthesis of triterpenoid saponins in plants. In: Scheper T, ed. Advances in biochemical engineering/biotechnology. Berlin, Heidelberg, Germany: Springer-Verlag, 3150.
  • Hayashi H, Hiraoka N, Ikeshiro Y, Yazaki K, Tanaka S, Kushiro T, Shibuya M, Ebizuka Y. 2000. Nucleotide sequence of a cDNA encoding putative oxidosqualene cyclase from Luffa cylindrica. Plant Physiology 122: 14571458.
  • Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM. 2000. pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Molecular Biology 42: 819832.
  • Herrera J, Wilson W, Matsuda S. 2000. A tyrosine-to-threonine mutation converts cycloartenol synthase to an oxidosqualene cyclase that forms lanosterol as its major product. Journal of the American Chemical Society 122: 67656766.
  • Hiei Y, Ohta S, Komari T, Kumashiro T. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant Journal 6: 271282.
  • Hood EE, Gelvin SB, Melchers LS, Hoekema A. 1993. New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Research 2: 208218.
  • Hostettmann K, Marston A. 1995. Saponins. Cambridge, UK: Cambridge University Press.
  • Inagaki Y, Johzuka-Hisatomi Y, Mori T, Takahashi S, Hayakawa Y, Peyachoknagul S, Ozeki Y, Iida S. 1999. Genomic organization of the genes encoding dihydroflavonol 4-reductase for flower pigmentation in the Japanese and common morning glories. Gene 226: 181188.
  • Jenuth JP. 2000. The NCBI. Publicly available tools and resources on the Web. Methods in Molecular Biology 132: 301312.
  • Kawano N, Ichinose K, Ebizuka Y. 2002. Molecular cloning and functional expression of cDNAs encoding oxidosqualene cyclases from Costus speciosus. Biological and Pharmaceutical Bulletin 25: 477482.
  • Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H et al. 2003. Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301: 376379.
  • Kolesnikova MD, Xiong Q, Lodiero S, Haua L, Matsuda SPT. 2006. Lanosterol biosynthesis in plants. Archives of Biochemistry and Biophysics 447: 8795.
  • Kushiro T, Shibuya M, Masuda K, Ebizuka Y. 2000. Mutational studies on triterpene synthases: engineering lupeol synthase into β-amyrin synthase. Journal of the American Chemical Society 122: 68166824.
  • Lepesheva GI, Virus C, Waterman MR. 2003. Conservation of the CYP51 family. Role of the B’ helix/BC loop and helices F and G in enzymatic function. Biochemistry 42: 90919101.
  • Lepesheva GI, Waterman MR. 2007. Sterol 14α-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochimica et Biophysica Acta 1770: 467477.
  • Lodeiro S, Xiong Q, Wilson WK, Kolesnikova MD, Onak CS, Matsuda SPT. 2007. An oxidosqualene cyclase makes numerous products by diverse mechanisms: a challenge to prevailing concepts of triterpene biosynthesis. Journal of the American Chemical Society 129: 1121311222.
  • Lynch M, Conery JS. 2000. The evolutionary fate and consequences of duplicate genes. Science 290: 11511155.
  • Mugford ST, Qi X, Bakht S, Hill L, Wegel E, Hughes RK, Papadopoulou K, Melton R, Philo M, Sainsbury F et al. 2009. A serine carboxypeptidase-like acyltransferase is required for synthesis of antimicrobial compounds and disease resistance in oats. Plant Cell 21: 24732484.
  • Murata J, Roepke J, Gordon H, De Luca V. 2008. The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell 20: 524542.
  • Mylona P, Owatworakit A, Papadopoulou K, Jenner H, Qin B, Findlay K, Hill L, Qi X, Bakht S, Melton R et al. 2008. Sad3 and Sad4 are required for saponin biosynthesis and root development in oat. Plant Cell 20: 201212.
  • Nelson DR, Schuler MA, Paquette SM, Werck-Reichhart D, Bak S. 2004. Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiology 135: 756772.
  • Ohno S. 1970. Evolution by gene duplication. Berlin, Germany: Springer-Verlag.
  • Osbourn A. 2010. Gene clusters for secondary metabolic pathways: an emerging theme in plant biology. Plant Physiology 154: 532535.
  • Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L et al. 2007. The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Research 35: D883D887.
  • Papadopoulou K, Melton RE, Leggett M, Daniels MJ, Osbourn AE. 1999. Compromised disease resistance in saponin-deficient mutants. Proceedings of the National Academy of Sciences, USA 96: 1292312928.
  • Phillips DR, Rasbery JM, Bartel B, Matsuda SPT. 2006. Biosynthetic diversity in plant triterpene cyclization. Current Opinion in Plant Biology 9: 305314.
  • Podust LM, Poulos TL, Waterman R. 2001. Crystal structure of cytochrome P450 14α-sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proceedings of the National Academy of Sciences, USA 98: 30683073.
  • Poralla K. 1994. The possible role of a repetitive amino acid cyclase motif in evolution of triterpenoid cyclases. Bioorganic and Medicinal Chemistry Letters 4: 285290.
  • Poralla K, Hewelt A, Prestwich GD, Abe I, Reipen I, Sprenger G. 1994. A specific amino acid repeat in squalene and oxidosqualene cyclases. Trends in Biochemical Sciences 19: 157158.
  • Qi X, Bakht S, Leggett M, Maxwell C, Melton R, Osbourn A. 2004. A gene cluster for secondary metabolism in oat – implications for the evolution of metabolic diversity in plants. Proceedings of the National Academy of Sciences, USA 101: 82338238.
  • Qi X, Bakht S, Qin B, Leggett M, Hemmings A, Mellon F, Eagles J, Werck-Reichhart D, Schaller H, Lesot A et al. 2006. A different function for a member of an ancient and highly conserved cytochrome P450 family: from essential sterols to plant defense. Proceedings of the National Academy of Sciences, USA 103: 1884818853.
  • Ronquist F, Huelsenbeck JP. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 15721574.
  • Seki H, Ohyama K, Sawai S, Mizutani M, Ohnishi T, Sudo H, Akashi T, Aoki T, Saito K, Muranake T. 2008. Licorice β-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin. Proceedings of the National Academy of Sciences, USA 105: 1420414209.
  • Shibuya M, Adachi S, Ebizuka Y. 2004. Cucurbitadienol synthase, the first committed enzyme for cucurbitacin biosynthesis, is a distinct enzyme from cycloartenol synthase for phytosterol biosynthesis. Tetrahedron 60: 69957003.
  • Shibuya M, Hoshino M, Katsube Y, Hayashi H, Kushiro T, Ebizuka Y. 2006. Identification of β-amyrin and sophoradiol 24-hydroxylase by expressed sequence tag mining and functional expression assay. FEBS Journal 273: 948959.
  • Shibuya M, Katsube Y, Otsuka M, Zhang H, Tansakul P, Xiang T, Ebizuka Y. 2009. Identification of a product specific β-amyrin synthase from Arabidopsis thaliana. Plant Physiology and Biochemistry 47: 2630.
  • Shimura K, Okada A, Okada K, Jikumaru Y, Ko K-W, Toyomasu T, Sassa T, Hasegawa M, Kodama O, Shibuya N et al. 2007. Identification of a biosynthetic gene cluster in rice for momilactones. Journal of Biological Chemistry 282: 3401334018.
  • Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analysis with thousands of taxa and mixed models. Bioinformatics 22: 26882690.
  • Swaminathan S, Morrone D, Wang Q, Fulton DB, Peters RJ. 2009. CYP76M7 is an ent-cassadiene C11-hydroxylase defining a second multifunctional diterpenoid biosynthetic gene cluster in rice. Plant Cell 21: 33153325.
  • Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez M, Foerster H, Li D, Meyer T, Muller R, Ploetz L et al. 2008. The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Research 36: D1009D1014.
  • Thoma R, Schulz-Gasch T, D’Arcy B, Benz J, Aebi J, Dehmlow H, Henning M, Stihle M, Ruf A. 2004. Insight into steroid scaffold formation from the structure of human oxidosqualene cyclase. Nature 432: 118122.
  • Tippmann HF. 2004. Analysis for free: comparing programs for sequence analysis. Briefings in Bioinformatics 5: 8287.
  • Usuka J, Brendel V. 2000. Optimal spliced alignment of homologous proteins to a genomic DNA template. Journal of Molecular Biology 297: 10751085.
  • Wang X, Shi X, Hao B, Ge S, Luo J. 2005. Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytologist 165: 937946.
  • Xiong Q, Wilson WK, Matsuda SPT. 2006. An Arabidopsis oxidosqualene cyclase catalyses iridial skeleton formation by Grob fragmentation. Angewandte Chemie International Edition 45: 12851288.
  • Yang Z. 2007a. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24: 15861591.
  • Yang Z. 2007b. Adaptive molecular evolution. In: Balding D, Bishop M, Cannings C, eds. Handbook of statistical genetics, 3rd edn. Chichester, UK: Wiley Press, 377406.