SEARCH

SEARCH BY CITATION

References

  • Axtell MJ, Bartel DP. 2005. Antiquity of microRNAs and their targets in land plants. Plant Cell 17: 16581673.
  • Bartel PL, Roecklein JA, SenGupta D, Fields S. 1996. A protein linkage map of Escherichia coli bacteriophage T7. Nature Genetics 12: 7277.
  • Benedito VA, Torres-Jerez I, Murray JD, Andriankaja A, Allen S, Kakar K, Wandrey M, Verdier J, Zuber H, Ott T et al. 2008. A gene expression atlas of the model legume Medicago truncatula. Plant Journal 55: 504513.
  • Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J. 2003. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115: 591602.
  • Bevis BJ, Glick BS. 2002. Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nature Biotechnology 20: 8387.
  • Boisson-Dernier A, Chabaud M, Garcia F, Bécard G, Rosenberg C, Barker DG. 2001. Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Molecular Plant–Microbe Interactions 14: 695700.
  • Boualem A, Laporte P, Jovanovic M, Laffont C, Plet J, Combier J-P, Niebel A, Crespi M, Frugier F. 2008. MicroRNA166 controls root and nodule development in Medicago truncatula. Plant Journal 54: 876887.
  • Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O. 2008. Widespread translational inhibition by plant miRNAs and siRNAs. Science 320: 11851190.
  • Caetano-Anollés G, Joshi PA, Gresshoff PM. 1993. Nodule morphogenesis in the absence of Rhizobium. In: PalaciosR, MoraJ, NewtonWE, eds. New horizons in nitrogen fixation, Current plant science and biotechnology in agriculture, Vol. 17. Dordrecht, the Netherlands: Kluwer Academic Publishers, 297302.
  • Chen X. 2004. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303: 20222025.
  • Cheng H-P, Walker GC. 1998. Succinoglycan is required for the initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti. Journal of Bacteriology 180: 51835191.
  • Combier J-P, Frugier F, de Billy F, Boualem A, El-Yahyaoui F, Moreau S, Vernié T, Ott T, Gamas P, Crespi M. 2006. MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes & Development 20: 30843088.
  • Covarrubias AA, Reyes JL. 2010. Post-transcriptional gene regulation of salinity and drought responses by plant microRNAs. Plant, Cell & Environment 33: 481489.
  • Crespi M, Frugier F. 2008. De novo organ formation from differentiated cells: root nodule organogenesis. Science Signaling 1: re11[Err. Science Signaling 2, er1].
  • Den Herder G, De Keyser A, De Rycke R, Rombauts S, Van de Velde W, Clemente MR, Verplancke C, Mergaert P, Kondorosi E, Holsters M et al. 2008. Seven in absentia proteins affect plant growth and nodulation in Medicago truncatula. Plant Physiology 148: 369382.
  • Dubrovsky JG, Doerner PW, Colón-Carmona A, Rost TL. 2000. Pericycle cell proliferation and lateral root initiation in Arabidopsis. Plant Physiology 124: 16481657.
  • Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783791.
  • Gonzalez-Rizzo S, Crespi M, Frugier F. 2006. The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18: 26802693.
  • Gonzalez-Rizzo S, Laporte P, Crespi M, Frugier F. 2009. Legume root architecture: a peculiar root system. In: BeeckmanT, ed. Root development, Annual Plant Reviews, Vol. 37. Chichester, UK: Wiley-Blackwell, 239287.
  • Guo H-S, Xie Q, Fei J-F, Chua N-H. 2005. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17: 13761386.
  • Gutierrez L, Bussell JD, Păcurar DI, Schwambach J, Păcurar M, Bellini C. 2009. Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell 21: 31193132.
  • Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 9598.
  • He X-J, Mu R-L, Cao W-H, Zhang Z-G, Zhang J-S, Chen S-Y. 2005. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant Journal 44: 903916.
  • Hirsch AM, LaRue TA. 1997. Is the legume nodule a modified root or stem or an organ sui generis? Critical Reviews in Plant Sciences 16: 361392.
  • Hirsch AM, Lum MR, Downie JA. 2001. What makes the rhizobia–legume symbiosis so special? Plant Physiology 127: 14841492.
  • Hu G, Fearon ER. 1999. Siah-1 N-terminal RING domain is required for proteolysis function, and C-terminal sequences regulate oligomerization and binding to target proteins. Molecular and Cellular Biology 19: 724732.
  • Jensen MK, Kjaersgaard T, Nielsen MM, Galberg P, Petersen K, O’Shea C, Skriver K. 2010. The Arabidopsis thaliana NAC transcription factor family: structure–function relationships and determinants of ANACO19 stress signalling. Biochemical Journal 426: 183196.
  • Jones-Rhoades MW, Bartel DP. 2004. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Molecular Cell 14: 787799.
  • Journet EP, Pichon M, Dedieu A, de Billy F, Truchet G, Barker DG. 1994. Rhizobium meliloti Nod factors elicit cell-specific transcription of the ENOD12 gene in transgenic alfalfa. Plant Journal 6: 241249.
  • Karimi M, Inzé D, Depicker A. 2002. GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science 7: 193195.
  • Kim JH, Woo HR, Kim J, Lim PO, Lee IC, Choi SH, Hwang D, Nam HG. 2009. Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323: 10531057.
  • Kosugi S, Ohashi Y. 2002. Interaction of the Arabidopsis E2F and DP proteins confers their concomitant nuclear translocation and transactivation. Plant Physiology 128: 833843.
  • Kouchi H, Imaizumi-Anraku H, Hayashi M, Hakoyama T, Nakagawa T, Umehara Y, Suganuma N, Kawaguchi M. 2010. How many peas in a pod? Legume genes responsible for mutualistic symbioses underground. Plant Cell and Physiology 51: 13811397.
  • Lanet E, Delannoy E, Sormani R, Floris M, Brodersen P, Crété P, Voinnet O, Robaglia C. 2009. Biochemical evidence for translational repression by Arabidopsis microRNAs. Plant Cell 21: 17621768.
  • Laufs P, Peaucelle A, Morin H, Traas J. 2004. MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131: 43114322.
  • Le Signor C, Savois V, Aubert G, Verdier J, Nicolas M, Pagny G, Moussy F, Sanchez M, Baker D, Clarke J et al. 2009. Optimizing TILLING populations for reverse genetics in Medicago truncatula. Plant Biotechnological Journal 7: 430441.
  • Lelandais-Brière C, Naya L, Sallet E, Calenge F, Frugier F, Hartmann C, Gouzy J, Crespi M. 2009. Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. Plant Cell 21: 27802796.
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCTmethod. Methods 25: 402408.
  • Mallory AC, Bartel DP, Bartel B. 2005. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17: 13601375.
  • Marin E, Jouannet V, Herz A, Lokerse AS, Weijers D, Vaucheret H, Nussaume L, Crespi MD, Maizel A. 2010. miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell 22: 11041117.
  • Markmann K, Parniske M. 2009. Evolution of root endosymbiosis with bacteria: how novel are nodules? Trends in Plant Science 14: 7786.
  • Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anollés G, Rolfe BG, Bauer WD. 2003. Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proceedings of the National Academy of Sciences, USA 100: 14441449.
  • Mathesius U, Schlaman HRM, Spaink HP, Sautter C, Rolfe BG, Djordjevic MA. 1998. Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant Journal 14: 2334.
  • Mathesius U, Weinman JJ, Rolfe BG, Djordjevic MA. 2000. Rhizobia can induce nodules in white clover by “hijacking” mature cortical cells activated during lateral root development. Molecular Plant–Microbe Interactions 13: 170182.
  • Meng Y, Ma X, Chen D, Wu P, Chen M. 2010. MicroRNA-mediated signaling involved in plant root development. Biochemical and Biophysical Research Communications 393: 345349.
  • Mergaert P, Nikovics K, Kelemen Z, Maunoury N, Vaubert D, Kondorosi A, Kondorosi E. 2003. A novel family in Medicago truncatula consisting of more than 300 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs. Plant Physiology 132: 161173.
  • Mortier V, Den Herder G, Whitford R, Van de Velde W, Rombauts S, D’haeseleer K, Holsters M, Goormachtig S. 2010. CLE peptides control Medicago truncatula nodulation locally and systemically. Plant Physiology 153: 222237.
  • Nishimura R, Ohmori M, Kawaguchi M. 2002. The novel symbiotic phenotype of enhanced-nodulating mutant of Lotus japonicus: astray mutant is an early nodulating mutant with wider nodulation zone. Plant Cell and Physiology 43: 853859.
  • Nutman P. 1948. Physiological studies on nodule formation. I. The relation between nodulation and lateral root formation in red clover. Annals of Botany 12: 8196.
  • Oláh B, Brière C, Bécard G, Dénarié J, Gough C. 2005. Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant Journal 44: 195207.
  • Oldroyd GED, Downie JA. 2008. Coordinating nodule morphogenesis with rhizobial infection in legumes. Annual Review of Plant Biology 59: 519546.
  • Olsen AN, Ernst HA, Lo Leggio L, Skriver K. 2005. NAC transcription factors: structurally distinct, functionally diverse. Trends in Plant Science 10: 7987.
  • Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P et al. 2003. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Research 10: 239247.
  • Papadopoulou K, Roussis A, Katinakis P. 1996. Phaseolus ENOD40 is involved in symbiotic and non-symbiotic organogenetic processes: expression during nodule and lateral root development. Plant Molecular Biology 30: 403417.
  • Parizotto EA, Dunoyer P, Rahm N, Himber C, Voinnet O. 2004. In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes & Development 18: 22372242.
  • Parry G, Calderon-Villalobos LI, Prigge M, Peret B, Dharmasiri S, Itoh H, Lechner E, Gray WM, Bennett M, Estelle M. 2009. Complex regulation of the TIR1/AFB family of auxin receptors. Proceedings of the National Academy of Sciences, USA 106: 2254022545.
  • Penmetsa RV, Frugoli JA, Smith LS, Long SR, Cook DR. 2003. Dual genetic pathways controlling nodule number in Medicago truncatula. Plant Physiology 131: 9981008.
  • del Pozo JC, Boniotti MB, Gutierrez C. 2002. Arabidopsis E2Fc functions in cell division and is degraded by the ubiquitin-SCFAtSKP2 pathway in response to light. Plant Cell 14: 30573071.
  • Quandt H-J, Pühler A, Broer I. 1993. Transgenic root nodules of Vicia hirsuta: a fast and efficient system for the study of gene expression in indeterminate-type nodules. Molecular Plant–Microbe Interactions 6: 699706.
  • Ruiz-Ferrer V, Voinnet O. 2009. Roles of plant small RNAs in biotic stress responses. Annual Review of Plant Biology 60: 485510.
  • Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406425.
  • Simon SA, Meyers BC, Sherrier DJ. 2009. MicroRNAs in the rhizobia legume symbiosis. Plant Physiology 151: 10021008.
  • Sprent JI. 1989. Which steps are essential for the formation of functional legume nodules? New Phytologist 111: 129153.
  • Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 46734680.
  • Timmers ACJ, Auriac M-C, Truchet G. 1999. Refined analysis of early symbiotic steps of the Rhizobium–Medicago interaction in relationship with microtubular cytoskeleton rearrangements. Development 126: 36173628.
  • Truchet G, Debellé F, Vasse J, Terzaghi B, Garnerone A-M, Rosenberg C, Batut J, Maillet F, Dénarié J. 1985. Identification of a Rhizobium meliloti pSym2011 region controlling the host specificity of root hair curling and nodulation. Journal of Bacteriology 164: 12001210.
  • Van de Peer Y, De Wachter R. 1997. Construction of evolutionary distance trees with TREECON for Windows: accounting for variation in nucleotide substitution rate among sites. Computer Applications in the Biosciences 13: 227230.
  • Vervliet G, Holsters M, Teuchy H, Van Montagu M, Schell J. 1975. Characterization of different plaque-forming and defective temperate phages in Agrobacterium strains. Journal of General Virology 26: 3348.
  • Vidal EA, Araus V, Lu C, Parry G, Green PJ, Coruzzi GM, Gutiérrez RA. 2010. Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA 107: 44774482.
  • Vlieghe K, Boudolf V, Beemster GTS, Maes S, Magyar Z, Atanassova A, de Almeida Engler J, De Groodt R, Inzé D, De Veylder L. 2005. The DP-E2F-like DEL1 gene controls the endocycle in Arabidopsis thaliana. Current Biology 15: 5963.
  • Voinnet O. 2009. Origin, biogenesis, and activity of plant microRNAs. Cell 136: 669687.
  • Wang J-W, Wang L-J, Mao Y-B, Cai W-J, Xue H-W, Chen X-Y. 2005. Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17: 22042216.
  • Wang Y, Duan L, Lu M, Li Z, Wang M, Zhai Z. 2006. Expression characteristics of GFP driven by NAC1 promoter and its response to auxin and gibberellin. Progress in Natural Science 16: 701705.
  • Xie Q, Frugis G, Colgan D, Chua N-H. 2000. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes & Development 14: 30243036.
  • Xie Q, Guo H-S, Dallman G, Fang S, Weissman AM, Chua N-H. 2002. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature 419: 167170.
  • Zhao Q, Gallego-Giraldo L, Wang H, Zeng Y, Ding S-Y, Chen F, Dixon RA. 2010. An NAC transcription factor orchestrates multiple features of cell wall development in Medicago truncatula. Plant Journal 63: 100114.