SEARCH

SEARCH BY CITATION

References

  • Atkin OK, Millar AH, Gardeström P, Day DA. 2000. Photosynthesis, carbohydrate metabolism and respiration in leaves of higher plants. In: Leegood RC, Sharkey TD, von Caemmerer S, eds. Photosynthesis: physiology and metabolism. Dordrecht, the Netherlands: Kluwer Academic Publishers, 153175.
  • Badeck F-W, Tcherkez G, Nogués S, Piel C, Ghashghaie J. 2005. Post-photosynthetic fractionation of stable carbon isotopes between plant organs – a widespread phenomenon. Rapid Communications in Mass Spectrometry 19: 13811391.
  • Barbour MM, McDowell NG, Tcherkez G, Bickford CP, Hanson DT. 2007. A new measurement technique reveals rapid post-illumination changes in the carbon isotope composition of leaf-respired CO2. Plant, Cell & Environment 30: 469482.
  • Barbour MM, Hunt JE, Kodama N, Laubach J, McSeveny TM, Rogers GND, Tcherkez G, Wingate L. 2011. Rapid changes in δ13C of ecosystem-respired CO2 after sunset are consistent with transient 13C enrichment of leaf respired CO2. New Phytologist. doi: 10.1111/j.1469-8137.2010.03635.x
  • Bowsher C, Steer M, Tobin A. 2008. Plant biochemistry. New York, NY, USA: Garland Science.
  • Budde RJA, Randall DD. 1990. Pea leaf mitochondrial pyruvate dehydrogenase complex is inactivated in vivo in a light-dependent manner. Proceedings of the National Academy of Sciences, USA 87: 673676.
  • Duff SMC, Chollet R. 1995. In vivo regulation of wheat-leaf phosphoenolpyruvate carboxylase by reversible phosphorylation. Plant Physiology 107: 775782.
  • Evans CT, Scragg AH, Ratledge C. 1983. A comparative study of citrate efflux from mitochondria of oleaginous and non-oleaginous yeasts. European Journal of Biochemistry 130: 195204.
  • Gessler A, Tcherkez G, Karyanto O, Keitel C, Ferrio JP, Ghashghaie J, Kreuzwieser J, Farquhar GD. 2009. On the metabolic origin of the carbon isotope composition of CO2 evolved from darkened light-acclimated leaves in Ricinus communis. New Phytologist 181: 374386.
  • Ghashghaie J, Badeck F-W, Lanigan G, Nogués S, Tcherkez G, Deléens E, Cornic G, Griffiths H. 2003. Carbon isotope fractionation during dark respiration and photorespiration in C3 plants. Phytochemistry Reviews 2: 145161.
  • Gleixner G, Schmidt H-L. 1997. Carbon isotope effects on the fructose-1,6-bisphosphate aldolase reaction, origin for non-statistical 13C distributions in carbohydrates. The Journal of Biological Chemistry 272: 53825387.
  • Gout E, Bligny R, Pascal N, Douce R. 1993. 13C Nuclear magnetic resonance studies of malate and citrate synthesis and compartmentation in higher plant cells. The Journal of Biological Chemistry 268: 39863992.
  • Graham D, Walker DA. 1962. Some effects of light on the interconversion of metabolites in green leaves. Biochemical Journal 82: 554560.
  • Grissom CB, Willeford KO, Wedding RT. 1987. Isotope effect studies of the chemical mechanism of nicotinamide adenine dinucleotide malic enzyme from Crassula. Biochemistry 26: 25942596.
  • Hill SA, Bryce JH. 1992. Malate metabolism and light-enhanced dark respiration in barley mesophyll protoplasts. In: Lambers H, van der Plas LHW, eds. Molecular, biochemical and physiological aspects of plant respiration. The Hague, The Netherlands: SPB Academic Publishing bv, 221230.
  • Hobbie EA, Werner RA. 2004. Intramolecular, compound-specific, and bulk carbon isotope patterns in C3 and C4 plants: a review and synthesis. New Phytologist 161: 371385 Errata New Phytologist162: 240.
  • Igamberdiev AU, Gardeström P. 2003. Regulation of NAD- and NADP-dependent isocitrate dehydrogenases by reduction levels of pyridine nucleotides in mitochondria and cytosol of pea leaves. Biochimica et Biophysica Acta 1606: 117125.
  • Igamberdiev AU, Romanowska E, Gardeström P. 2001. Photorespiratory flux and mitochondrial contribution to energy and redox balance of barley leaf protoplasts in the light and during light–dark transitions. Journal of Plant Physiology 158: 13251332.
  • Lee CP, Eubel H, Millar AH. 2010. Diurnal changes in mitochondrial function reveal daily optimization of light and dark respiratory metabolism in Arabidopsis. Molecular & Cellular Proteomics 9.10: 21252139.
  • Melzer E, O’Leary MH. 1987. Anapleurotic CO2 fixation by phosphoenolpyruvate carboxylase in C3 plants. Plant Physiology 84: 5860.
  • Melzer E, O’Leary MH. 1991. Aspartic-acid synthesis in C3 plants. Planta 185: 368371.
  • Melzer E, Schmidt H-L. 1987. Carbon isotope effects on the pyruvate dehydrogenase reaction and their importance for relative carbon-13 depletion in lipids. The Journal of Biological Chemistry 262: 81598164.
  • Merlo L, Ferretti M, Ghisi R, Passera C. 1993. Developmental changes of enzymes of malate metabolism in relation to respiration, photosynthesis and nitrate assimilation in peach leaves. Physiologia Plantarum 89: 7176.
  • Pataki DE. 2005. Emerging topics in stable isotope ecology: are there isotope effects in plant respiration? New Phytologist 167: 321323.
  • Popov VN, Eprintsev AT, Fedorin DN, Igamberdiev AU. 2009. Succinate dehydrogenase in Arabidopsis thaliana is regulated by light via phytochrome A. FEBS Letters 584: 199202.
  • Rossmann A, Butzenlechner M, Schmidt H-L. 1991. Evidence for a nonstatistical carbon isotope distribution in natural glucose. Plant Physiology 96: 609614.
  • Schmidt H-L. 2003. Fundamentals and systematics of the non-statistical distributions of isotopes in natural compounds. Naturwissenschaften 90: 537552.
  • Srere PA, Sherry AD, Malloy CR, Sumegi B. 1996. Channeling in the Krebs tricarboxylic acid cycle. In: Agius L, Sherratt HSA, eds. Channelling in intermediary metabolism. London, UK: Portland Press, 201217.
  • Sweetlove LJ, Beard KFM, Nunes-Nesi A, Fernie AR, Ratcliffe RG. 2010. Not just a circle: flux modes in the plant TCA cycle. Trends in Plant Science 15: 462470.
  • Tcherkez G. 2010. Do metabolic fluxes matter for interpreting isotopic respiratory signals? New Phytologist 186: 566568.
  • Tcherkez G, Cornic G, Bligny R, Gout E, Ghashghaie J. 2005. In vivo respiratory metabolism of illuminated leaves. Plant Physiology 138: 15961606.
  • Tcherkez G, Farquhar GD. 2005. Carbon isotope effect predictions for enzymes involved in the primary carbon metabolism of plant leaves. Functional Plant Biology 32: 277291.
  • Tcherkez G, Farquhar G, Badeck F, Ghashghaie J. 2004. Theoretical considerations about carbon isotope distribution in glucose of C3 plants. Functional Plant Biology 31: 857877.
  • Tcherkez G, Mahé A, Gauthier P, Mauve C, Gout E, Bligny R, Cornic G, Hodges M. 2009. In folio respiratory fluxomics revealed by 13C isotopic labeling and H/D isotope effects highlight the noncyclic nature of the tricarboxylic acid “cycle” in illuminated leaves. Plant Physiology 151: 620630.
  • Voet D, Voet JG. 1995. Biochemistry, 2nd edn. New York, NY, USA: Wiley, Chapter 19: Citric Acid Cycle, 538562.
  • Wedding RT, Black MK, Pap D. 1976. Malate dehydrogenase and NAD malic enzyme in the oxidation of malate by sweet potato mitochondria. Plant Physiology 58: 740743.
  • Wegener F, Beyschlag W, Werner C. 2010. The magnitude of diurnal variation in carbon isotopic composition of leaf dark respired CO2 correlates with the difference between δ13C of leaf and root material. Functional Plant Biology 37: 849858.
  • Werner C. 2010. Do isotopic respiratory signals trace changes in metabolic fluxes? New Phytologist 186: 569571.
  • Werner C, Wegener F, Unger S, Nogués S, Priault P. 2009. Short-term dynamics of isotopic composition of leaf-respired CO2 upon darkening: measurements and implications. Rapid Communications in Mass Spectrometry 23: 24282438.