SEARCH

SEARCH BY CITATION

References

  • Baltunis BS, Huber DA, White TL, Goldfarb B, Stelzer HE. 2005. Genetic effects of rooting loblolly pine stem cuttings from a partial diallel mating design. Canadian Journal of Forest Research 35: 10981108.
  • Baltunis BS, Huber DA, White TL, Goldfarb B, Stelzer HE. 2007. Genetic analysis of early field growth of loblolly pine clones and seedlings from the same full-sib families. Canadian Journal of Forest Research 37: 195205.
  • Bernardo R, Yu J. 2007. Prospects for genomewide selection for quantitative traits in maize. Crop Science 47: 10821090.
  • Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC et al. 2009. The genetic architecture of maize flowering time. Science 325: 714718.
  • Daetwyler HD, Hickey JM, Henshall JM, Dominik S, Gredler B, van der Werf JHJ, Hayes BJ. 2010. Accuracy of estimated genomic breeding values for wool and meat traits in a multi-breed sheep population. Animal Production Science 50: 10041010.
  • Dekkers JCM. 2004. Commercial application of marker- and gene-assisted selection in livestock: strategies and lessons. Journal of Animal Science 82(E-Suppl): E313E328.
  • Eckert AJ, van Heerwaarden J, Wegrzyn JL, Nelson CD, Ross-Ibarra J, Gonzalez-Martinez SC, Neale DB. 2010. Patterns of population structure and environmental associations to aridity across the range of loblolly pine (Pinus taeda L., Pinaceae). Genetics 185: 969982.
  • Emebiri LC, Devey ME, Matheson AC, Slee MU. 1998. Age-related changes in the expression of QTLs for growth in radiata pine seedlings. Theoretical and Applied Genetics 97: 10531061.
  • FAO. 2002. World agriculture: towards 2015/2030. Summary Report. Rome, Italy: Food and Agriculture Organization of the United Nations.
  • Garrick DJ, Taylor JF, Fernando RL. 2009. Deregressing estimated breeding values and weighting information for genomic regression analyses. Genetics Selection Evolution 41: 55.
  • Gianola D, Campos G, Hill WG, Manfredi E, Fernando R. 2009. Additive genetic variability and the Bayesian alphabet. Genetics 183: 347363.
  • Gilmour AR, Cullis BR, Harding SA, Thompson R. 2006. ASRemlUpdate: what’s new in Release 2.00. Hemel Hempstead, UK: VSN International Ltd.
  • Gonzalez-Martinez SC, Huber D, Ersoz E, Davis JM, Neale DB. 2008. Association genetics in Pinus taeda L. II. Carbon isotope discrimination. Heredity 101: 1926.
  • Gonzalez-Martinez SC, Wheeler NC, Ersoz E, Nelson CD, Neale DB. 2007. Association genetics in Pinus taeda L. I. Wood property traits. Genetics 175: 399409.
  • Grattapaglia D, Kirst M. 2008. Eucalyptus applied genomics: from gene sequences to breeding tools. New Phytologist 179: 911929.
  • Grattapaglia D, Resende M. 2010. Genomic selection in forest tree breeding. Tree Genetics and Genomes 7: 241255.
  • Hayes BJ, Bowman PJ, Chamberlain AC, Verbyla K, Goddard ME. 2009. Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genetics Selection Evolution 41: 51.
  • Hayes B, Goddard M. 2010. Genome-wide association and genomic selection in animal breeding. Genome 53: 876883.
  • Heffner EL, Sorrells ME, Jannink JL. 2009. Genomic selection for crop improvement. Crop Science 49: 112.
  • Humblot P, Le Bourhis D, Fritz S, Colleau JJ, Gonzalez C, Guyader Joly C, Malafosse A, Heyman Y, Amigues Y, Tissier M et al. 2010. Reproductive technologies and genomic selection in cattle. Veterinary Medicine International 2010: 192787.
  • IPCC. 2007. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, eds. Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, UK & New York, NY, USA: Cambridge University Press.
  • Iwata H, Hayashi T, Tsumura Y. 2011. Prospects for genomic selection in conifer breeding: a simulation study of Cryptomeria japonica. Tree Genetics and Genomes 7: 112.
  • Kaya Z, Sewell MM, Neale DB. 1999. Identification of quantitative trait loci influencing annual height- and diameter-increment growth in loblolly pine (Pinus taeda L.). Theoretical and Applied Genetics 98: 586592.
  • Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM, Purugganan MD, Durrant C, Mott R. 2009. A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genetics 5: e1000551.
  • Lande R, Thompson R. 1990. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124: 743756.
  • Legarra A, Robert-Granie C, Manfredi E, Elsen JM. 2008. Performance of genomic selection in mice. Genetics 180: 611618.
  • Lerceteau E, Szmidt AE, Andersson B. 2001. Detection of quantitative trait loci in Pinus sylvestris L. across years. Euphytica 121: 117122.
  • Long AD, Langley CH. 1999. The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Research 9: 720731.
  • Meuwissen TH, Hayes BJ, Goddard ME. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157: 18191829.
  • Muir WM. 2007. Comparison of genomic and traditional BLUP-estimated breeding value accuracy and selection response under alternative trait and genomic parameters. Journal of Animal Breeding and Genetics 124: 342355.
  • Paterson AH, Saranga Y, Menz M, Jiang CX, Wright RJ. 2003. QTL analysis of genotype × environment interactions affecting cotton fiber quality. Theoretical and Applied Genetics 106: 384396.
  • Paterson AH, Tanksley SD, Sorrells ME. 1991. DNA markers in plant improvement. Advances in Agronomy 46: 3990.
  • Resende MDV, Lopes PS, Silva RL, Pires IL. 2008. Seleção genômica ampla (GWS) e maximização da eficiência do melhoramento genético. Pesquisa Florestal Brasileira 56: 6377.
  • Resende MDV, Resende MFRJ, Aguiar AM, Abad JIM, Missiaggia AA, Sansaloni CP, Petroli CD, Grattapaglia D. 2010. Computação da seleção genômica ampla (GWS). Documentos EMBRAPA 210 – ISSN 1679-2599. Colombo, Brazil: EMBRAPA Florestas.
  • Strauss SH, Lande R, Namkoong G. 1992. Limitations of molecular-marker-aided selection in forest tree breeding. Canadian Journal of Forest Research 22: 10501061.
  • Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES. 2011. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nature Genetics 43: 159162.
  • Usai MG, Goddard ME, Hayes BJ. 2009. Lasso with cross-validation for genomic selection. Genetics Research 91: 427436.
  • Verbyla KL, Calus MPL, Mulder HA, de Haas Y, Veerkamp RF. 2010. Predicting energy balance for dairy cows using high-density single nucleotide polymorphism information. Journal of Dairy Science 93: 27572764.
  • Visscher PM. 2008. Sizing up human height variation. Nature Genetics 40: 489490.
  • Wear DN, Carter DR, Prestemon J. 2007. The U.S. South’s timber sector in 2005: a prospective analysis of recent change. Asheville, NC, USA: USDA Forest Service, Southern Research Station. General Technical Report No. SRS-99.
  • White TL, Adams WT, Neale DB. 2007. Forest genetics. Wallingford, UK and Cambridge, MA, USA: CABI Publishing.
  • White TL, Carson M. 2004. Breeding program of conifers. In: Walter C, Carson M, eds. Plantation forest biotechnology for the 21st century. Kerala, India: Research Signpost, 6185.
  • Williams ER, Matheson AC, Harwood CE. 2002. Experimental design and analysis for tree improvement, 2nd edn. Collingwood, Vic., Australia: CSIRO Publishing.
  • Yamada Y. 1962. Genotype by environment interaction and genetic correlation of the same trait under different environments. Japan Journal of Genetics 37: 498509.