SEARCH

SEARCH BY CITATION

References

  • Albert VA, Gustafsson MHG, Dilaurenzio L. 1998. Ontogenetic systematics, molecular developmental genetics and the angiosperm petal. In: Soltis D, Soltis P, Doyle JJ, eds. Molecular Systematics of Plants II. New York, NY, USA: Chapman & Hall, 349374.
  • Bowman JL. 1997. Evolutionary conservation of angiosperm flower development at the molecular and genetic levels. Journal of Biosciences 22: 515527.
  • Bowman JL, Smyth DR, Meyerowitz EM. 1989. Genes directing flower development in Arabidopsis. Plant Cell 1: 3752.
  • Bowman JL, Smyth DR, Meyerowitz EM. 1991. Genetic interactions among floral homeotic genes of Arabidopsis. Development 112: 120.
  • Bradley D, Carpenter R, Sommer H, Hartley N, Coen E. 1993. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell 72: 8595.
  • Burr B, Barthlott W. 1993. Untersuchungen zur ultraviolett-reflexion von angiospermenblüten II. Magnoliidae, Ranunculidae, Hamamelidae, Caryophyllidae, Rosidae. Tropische und Subtropische Pflanzenwelt 87: 1193.
  • Carpenter R, Coen ES. 1990. Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. Genes & Development 4: 14831493.
  • Carr SM, Irish VF. 1997. Floral homeotic gene expression defines developmental arrest stages in Brassica oleracea L. vars. botrytis and italica. Planta 201: 179188.
  • Chanderbali A, Kim S, Buzgo M, Zheng P, Oppenheimer DG, Soltis DE, Soltis PS. 2006. Genetic footprints of stamen ancestors guide perianth evolution in Persea (Lauraceae). International Journal of Plant Sciences 167: 10751089.
  • Coen ES, Meyerowitz EM. 1991. The war of the whorls: genetic interaction controlling flower development. Nature 353: 3137.
  • Cronquist A. 1981. An integrated system of classification of flowering plants. New York, NY, USA: Columbia University Press.
  • De Martino G, Pan I, Emmanuel E, Levy A, Irish VF. 2006. Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development. The Plant Cell 18: 18331845.
  • Di Stilio VS, Kramer EM, Baum DA. 2005. Floral MADS box genes and homeotic gender dimorphism in Thalictrum dioicum (Ranunculaceae) – a new model for the study of dioecy. Plant Journal 42: 755766.
  • Di Stilio VS, Martin C, Schulfer AF, Connelly CF. 2009. An ortholog of MIXTA-like2 controls epidermal cell shape in flowers of Thalictrum. New Phytologist 183: 718728.
  • Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF. 2004. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Current Biology 14: 19351940.
  • Dudareva N, Pichersky E. 2000. Biochemical and molecular genetic aspects of floral scent. Plant Physiology 122: 627633.
  • Engler A. 1964. Syllabus der Pflanzenfamilien II. 12th edn vol 2 .
  • Flanagan CA, Ma H. 1994. Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant Arabidopsis flowers. Plant Molecular Biology 26: 581595.
  • Geuten K, Becker A, Kaufmann K, Caris P, Janssens S, Viaene T, Theissen G, Smets E. 2006. Petaloidy and petal identity MADS-box genes in the balsaminoid genera Impatiens and Marcgravia. Plant Journal 47: 501518.
  • Geuten K, Irish VF. 2010. Hidden variability of floral homeotic B genes in Solanaceae provides a molecular basis for the evolution of novel functions. The Plant Cell 22: 25622578.
  • Goto K, Meyerowitz EM. 1994. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes & Development 8: 15481560.
  • Grotewold E. 2006. The genetics and biochemistry of floral pigments. Annual Review of Plant Biology 57: 761780.
  • Guindon S, Gascuel O. 2003. PhyML- A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696704.
  • Harms H. 1898. Die Gattungen der Cornaceen. Berichte Deutsche Botanische Gesellschaft 15: 2129.
  • Honma T, Goto K. 2001. Complexes of MADS-box genes are sufficient to convert leaves into floral organs. Nature 25: 469471.
  • Horne AS. 1909. The structure and affinities of Davidia involucrata. Baill Transactions of the Linnean Society of London II 7: 303326.
  • Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754755.
  • Hutchinson J. 1959. Families of flowering plants – Dicotyledons. Oxford UK: Clarendon Press.
  • Irish VF. 2009. Evolution of petal identity. Journal of Experimental Botany 60: 25172527.
  • Irish VF. 2011. The flowering of Arabidopsis flower development. Plant Journal 61: 10141028.
  • Jack T, Brockmann LL, Meyerowitz EM. 1992. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68: 683697.
  • Jaramillo MA, Kramer EM. 2004. APETALA 3 and PISTILLATA homologs exhibit novel expression patterns in the unique perianth in Aristolochia (Aristolochiaceae). Evolution & Development 6: 449458.
  • Kanno A, Saeki H, Kameya T, Seadler H, Theißen G. 2003. Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana). Plant Molecular Biology 53: 831841.
  • Kaufmann K, Muiño JM, Jauregui R, Airoldi CA, Smaczniak C, Krajewski P, Angenent GC. 2009. Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PloS Biology 7: e1000090.
  • Kim S, Koh J, Yoo M-J, Kong H, Hu Y, Ma H, Soltis PS, Soltis DE. 2005. Expression of floral MADS-box genes in basal angiosperms: implications on evolution of floral regulators and the perianth. Plant Journal 43: 724744.
  • Kramer EM, Di Stillio VS, Schluter P. 2003. Complex patterns of gene duplication in the APETALA3 and PISTILLATA lineages of the Ranunculaceae. International Journal of Plant Sciences 164: 111.
  • Kramer EM, Jaramillo MA. 2005. Genetic basis for innovations in floral organ identity. Journal of Experimental Zoology 6: 526535.
  • Kramer EM, Su HJ, Wu CC, Hu JH. 1998. Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149: 765783.
  • Kubitzki K. 2003. The families and genera of vascular plants, vol VI. Berlin, Germany: Springer-Verlag.
  • Maddison RP, Maddison WP. 2003. MacCLADE 4: analysis of phylogeny and character evolution, version 4.06. Sunderland, MA, USA: Sinauer Associates.
  • Manchester SR, Crane PR, Golovneva LB. 1999. An extinct genus with affinities to extant Davidia and Camptotheca (Cornales) from the Paleocene of North America and Eastern Asia. International Journal of Plant Sciences 160: 188207.
  • Mandel MA, Yanofsky MF. 1998. The Arabidopsis AGL9 MADS box gene is expressed in young flower primordia. Sexual Plant Reproduction 11: 2228.
  • Mara CD, Huang T, Irish VF. 2010. The Arabidopsis floral homeotic proteins APETALA3 and PISTILLATA negatively regulate the BANQUO genes implicated in light signaling. The Plant Cell 22: 690702.
  • Nakamura T, Fukuda T, Nakano M, Hasebe M, Kameya T, Kanno A. 2005. The modified ABC model explains the development of the petaloid perianth of Agapanthus praecox ssp. orientalis (Agapanthaceae) flowers. Plant Molecular Biology 58: 435445.
  • Park JH, Ishikawa Y, Yochiai R, Kanno A, Kameya T. 2004. Two GLOBOSA-like genes are expressed in second and third whorls of homochlamydeous flowers in Asparagus officinalis L. Plant and Cell Physiology 45: 325332.
  • Park JH, Ishikawa Y, Yoshida R, Kanno A, Kameya T. 2003. Expression of AODEF, a B-functional MADS-box gene, in stamens and inner petals of the dioecious species Asparagus officinalis L. Plant Molecular Biology 51: 867875.
  • Pelaz S, Tapia-Lopez R, Alvarez-Buylla ER, Yanofsky MF. 2001. Conversion of leaves into petals in Arabidopsis. Current Biology 11: 182184.
  • Posada P, Crandall KA. 2001. Selecting the best-fit model of nucleotide substitution. Systematic Biology 50: 580601.
  • Rijpkema AS, Royaert S, Zethof J, van der Weerden G, Gerats T, Vandenbussche M. 2006. Analysis of the Petunia TM6 MADS box gene reveals functional divergence within the DEF/AP3 lineage. The Plant Cell 18: 18191832.
  • Savidge B, Rounsley SD, Yanofsky MF. 1995. Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. The Plant Cell 7: 721733.
  • Schwarz-Sommer Z, Hue I, Huijser P, Flor PJ, Hansen R, Tetens F, Lönnig WE, Saedler H, Sommer H. 1992. Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. The EMBO Journal 11: 251263.
  • Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H. 1990. Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250: 931936.
  • Sommer H, Beltran JP, Huijser P, Pape H, Lönnig W-E, Saedler H, Schwarz-Sommer Z. 1990. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. The EMBO Journal 9: 605613.
  • Sun JF, Ging YB, Renner SS, Huang SQ. 2008. Multifunctional bracts in the Dove tree Davidia involucrata (Nyssaceae: Cornales): rain protection and pollinator attraction. American Naturalist 171: 119124.
  • Takhtajan A. 1997. Diversity and classification of flowering plants. New York, USA: Colombia University Press.
  • Takhtajan A. 2009. Flowering plants. New York, USA: Colombia University Press.
  • Tröbner W, Ramirez L, Motte P, Hue I, Huijser P, Lönnig W-E, Saedler H, Sommer H, Schwarz-Sommer Z. 1992. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. The EMBO Journal 11: 46934704.
  • Tsai WC, Kuoh CS, Chuang MH, Chen WH, Chen HH. 2004. Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant and Cell Physiology 45: 831844.
  • Tsai WC, Lee PF, Chen HL, Hsiao YY, Wei WJ, Pan ZJ, Chuang MH, Kuoh CS, Chen WH, Chen HH. 2005. PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant and Cell Physiology 46: 11251139.
  • van Tunen AJ, Eikelboom W, Angenent GC. 1993. Floral organogenesis in Tulipa. Flowering Newsletter 116: 3338.
  • Tzeng TY, Yang CH. 2001. A MADS box gene from lily (Lilium longiflorum) is sufficient to generate dominant negative mutation by interacting with PISTILLATA (PI) in Arabidopsis thaliana. Plant and Cell Physiology 42: 11561168.
  • Vandenbussche M, Zethof J, Royaert S, Weterings K, Gerats T. 2004. The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development. The Plant Cell 16: 741754.
  • Viaene T, Vekemans D, Irish VF, Geeraerts A, Huysmans S, Janssens S, Smets E, Geuten K. 2009. PISTILLATA-duplications as a mode for floral diversification in (basal) asterids. Molecular Biology and Evolution 26: 26272645.
  • Weberling F. 1989. Morphology of flowers and inflorescences. New York, NY, USA: Cambridge University Press.
  • Whitney HM, Glover BJ. 2007. Morphology and development of floral features recognized by pollinators. Arthropod-Plant Interactions 3: 147158.
  • Winter KU, Becker A, Münster T, Kim JT, Saedler H, Theissen G. 1999. MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. Proceedings of the National Academy of Sciences, USA 96: 73427347.
  • Winter KU, Weiser C, Kaufmann K, Bohne A, Kirchner C, Kanno A, Saedler H, Theissen G. 2002. Evolution of class B floral homeotic proteins: obligate heterodimerization originated from homodimerization. Molecular Biology and Evolution 19: 587596.
  • Xiang QY, Thomas DT, Xiang QP. 2011. Resolving and dating the phylogeny of Cornales-Effects of taxon sampling, data partitions, and fossil calibrations. Molecular Phylogenetics and Evolution 59: 123138.
  • Xu Y, Teo LL, Zhou J, Kumar P, Yu H. 2006. Floral organ identity genes in the Dendrobium orchids. Plant Journal 46: 5468.
  • Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM. 1990. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346: 3539.
  • Zahn LM, Kong H, Leebens-Mack JH, Kim S, Soltis PS, Landherr LL, Soltis DE, dePamphilis CW, Ma H. 2005. The evolution of SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics 169: 22092223.