SEARCH

SEARCH BY CITATION

References

  • Akin DE. 2007. Grass lignocellulose: strategies to overcome recalcitrance. Applied Biochemistry and Biotechnology 137: 315.
  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J. 2002. Map kinase signalling cascade in Arabidopsis innate immunity. Nature 415: 977983.
  • Bell J, Lehmann D, Wang ZY, Chen L, Auh CK, Dowling P. 2004. Transgenic down-regulation of caffeic acid o-methyltransferase (comt) led to improved digestibility in tall fescue (Festuca arundinacea). Functional Plant Biology 31: 235245.
  • Besseau S, Hoffmann L, Geoffroy P, Lapierre C, Pollet B, Legrand M. 2007. Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects Auxin transport and plant growth. Plant Cell 19: 148162.
  • Bomal C, Bedon F, Caron S, Mansfield SD, Levasseur C, Cooke JEK, Blais S, Tremblay L, Morency MJ, Pavy N. 2008. Involvement of Pinus taeda MYB1 and MYB8 in phenylpropanoid metabolism and secondary cell wall biogenesis: a comparative in planta analysis. Journal of Experimental Botany 59: 39253939.
  • Bouton JH. 2007. Molecular breeding of switchgrass for use as a biofuel crop. Current Opinion in Genetics & Development 17: 553558.
  • Bylesjo M, Nilsson R, Srivastava V, Gronlund A, Johansson AI, Jansson S, Karlsson J, Moritz T, Wingsle G, Trygg J. 2008. Integrated analysis of transcript, protein and metabolite data to study lignin biosynthesis in hybrid aspen. Journal of Proteome Research 8: 199210.
  • Chen F, Dixon RA. 2007. Lignin modification improves fermentable sugar yields for biofuel production. Nature Biotechnology 25: 759761.
  • Deluc L, Barrieu F, Marchive C, Lauvergeat V, Decendit A, Richard T, Carde J-P, Merillon J-M, Hamdi S. 2006. Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiology 140: 499511.
  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M. 2008. Phylogeny. Fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Research 36: W465W469.
  • Elkind Y, Edwards R, Mavandad M, Hedrick SA, Ribak O, Dixon RA, Lamb CJ. 1990. Abnormal plant development and down regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene. Proceedings of the National Academy of Sciences, USA 87: 90579061.
  • Escamilla-Trevino LL, Shen H, Uppalapati SR, Ray T, Tang Y, Hernandez T, Yin Y, Xu Y, Dixon RA. 2009. Switchgrass (Panicum virgatum) possesses a divergent family of cinnamoyl CoA reductases with distinct biochemical properties. New Phytologist 185: 143155.
  • Fornalé S, Shi X, Chai C, Encina A, Irar S, Capellades M, Fuguet E, Torres JL, Rovira P, Puigdomènech P. 2010. ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux. Plant Journal 64: 633644.
  • Fornalé S, Sonbol F-M, Maes T, Capellades M, Puigdomènech P, Rigau J, Caparrós-Ruiz D. 2006. Down-regulation of the maize and Arabidopsis thaliana caffeic acid o-methyl-transferase genes by two new maize R2R3-MYB transcription factors. Plant Molecular Biology 62: 809823.
  • Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Chen F, Bouton J, Foston M, Dixon RA, Wang Z-Y. 2011. Genetic manipulation of lignin biosynthesis in switchgrass significantly reduces recalcitrance and improves biomass ethanol production. Proceedings of the National Academy of Sciences, USA 108: 38033808.
  • Fuentes RG, Taliaferro CM. 2002. Biomass yield stability of switchgrass cultivars. In: Janick J, Whipkey A, eds. Trends in new crops and new uses. Alexandria, VA, USA: ASHS Press, 276282.
  • Gális I, Šimek P, Narisawa T, Sasaki M, Horiguchi T, Fukuda H, Matsuoka K. 2006. A novel R2R3 MYB transcription factor NtMYBJS1 is a methyl jasmonate-dependent regulator of phenylpropanoid-conjugate biosynthesis in tobacco. Plant Journal 46: 573592.
  • Gallego-Giraldo L, Jikumaru Y, Kamiya Y, Tang Y, Dixon RA. 2011. Selective lignin down-regulation leads to constitutive defense response expression in alfalfa (Medicago sativa L.). New Phytologist 190: 627639.
  • Goicoechea M, Lacombe E, Legay S, Mihaljevic S, Rech P, Jauneau A, Lapierre C, Pollet B, Verhaegen D, Chaubet-Gigot N et al. 2005. EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant Journal 43: 553567.
  • Hatton D, Sablowski R, Yung MH, Smith C, Schuch W, Bevan M. 1995. Two classes of cis sequences contribute to tissue-specific expression of a PAL2 promoter in transgenic tobacco. Plant Journal 7: 859876.
  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD. 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315: 804807.
  • Hisano H, Nandakumar R, Wang Z-Y. 2009. Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cellular & Developmental Biology – Plant 45: 306313.
  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT. 1985. A simple and general method for transferring genes into plants. Science 227: 12291231.
  • Jackson D. 1991. In-situ hybridization in plants. In: Bowles DJ, Gurr SJ, McPherson M, eds. Molecular plant pathology: a practical approach. New York, USA: Oxford University Press, 163174.
  • Jackson LA, Shadle GL, Zhou R, Nakashima J, Chen F, Dixon RA. 2008. Improving saccharification efficiency of alfalfa stems through modification of the terminal stages of monolignol biosynthesis. BioEnergy Research 1: 180192.
  • Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weisshaar B, Martin C. 2000. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. The EMBO Journal 19: 61506161.
  • Karlen Y, McNair A, Perseguers S, Mazza C, Mermod N. 2007. Statistical significance of quantitative PCR. BMC Bioinformatics 8: 131.
  • Karpinska B, Karlsson M, Srivastava M, Stenberg A, Schrader J, Sterky F, Bhalerao R, Wingsle G. 2004. MYB transcription factors are differentially expressed and regulated during secondary vascular tissue development in hybrid aspen. Plant Molecular Biology 56: 255270.
  • Keshwani DR, Cheng JJ. 2009. Switchgrass for bioethanol and other value-added applications: a review. Bioresource Technology 100: 15151523.
  • Kurosu T, Peterlin BM. 2004. VP16 and ubiquitin; binding of P-TEFb via its activation domain and ubiquitin facilitates elongation of transcription of target genes. Current Biology 14: 11121116.
  • Legay S, Lacombe E, Goicoechea M, Briere C, Séguin A, Mackay J, Grima-Pettenati J. 2007. Molecular characterization of EgMYB1, a putative transcriptional repressor of the lignin biosynthetic pathway. Plant Science 173: 542549.
  • Li X, Bonawitz ND, Weng JK, Chapple C. 2010. The growth reduction associated with repressed lignin biosynthesis in Arabidopsis thaliana is independent of flavonoids. Plant Cell 22: 16201632.
  • Mann DGJ, LaFayette PR, Abercrombie LL, King ZR, Mazarei M, Halter MC, Poovaiah CR, Baxter H, Shen H, Dixon RA et al. 2011. Gateway-compatible vectors for high-throughput gene functional analysis in switchgrass and other monocot species. Plant Biotechnology Journal. doi: 10.1111/j.1467-7652.2011.00658.x.
  • Matsui K, Umemura Y, Ohme-Takagi M. 2008. Atmybl2, a protein with a single myb domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. Plant Journal 55: 954967.
  • McLaughlin SB, Adams Kszos L. 2005. Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass and Bioenergy 28: 515535.
  • McLaughlin SB, De La Torre Ugarte DG, Garten CT Jr, Lynd LR, Sanderson MA, Tolbert VR, Wolf DD. 2002. High-value renewable energy from prairie grasses. Environmental Science & Technology 36: 21222129.
  • Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M. 2007. NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19: 270280.
  • Monsma SA, Blissard GW. 1995. Identification of a membrane fusion domain and an oligomerization domain in the baculovirus GP64 envelope fusion protein. Journal of Virology 69: 2583.
  • Moore KJ, Moser LE, Vogel KP, Waller SS, Johnson BE, Pedersen JF. 1991. Describing and quantifying growth stages of perennial forage grasses. Agronomy Journal 83: 10731077.
  • Nakashima J, Chen F, Jackson L, Shadle G, Dixon RA. 2008. Multi-site genetic modification of monolignol bioynthesis in alfalfa (Medicago sativa L.)- effects on lignin composition in specific cell types. New Phytologist 179: 738750.
  • Okada M, Lanzatella C, Saha MC, Bouton J, Wu R, Tobias CM. 2010. Complete switchgrass genetic maps reveal subgenome collinearity, preferential pairing, and multilocus interactions. Genetics 185: 745760.
  • Olsen AN, Ernst HA, Lo Leggio L, Skriver K. 2005. NAC transcription factors: structurally distinct, functionally diverse. Trends in Plant Science 10: 7987.
  • Oyama T, Shimura Y, Okada K. 1997. The Arabidopsis hy5 gene encodes a bZip protein that regulates stimulus-induced development of root and hypocotyl. Genes & Development 11: 2983.
  • Patzlaff A, McInnis S, Courtenay A, Surman C, Newman LJ, Smith C, Bevan MW, Mansfield S, Whetten RW, Sederoff RR et al. 2003. Characterisation of a pine MYB that regulates lignification. Plant Journal 36: 743754.
  • Pauly M, Keegstra K. 2008. Cell-wall carbohydrates and their modification as a resource for biofuels. Plant Journal 54: 559568.
  • Preston J, Wheeler J, Heazlewood J, Li SF, Parish RW. 2004. AtMYB32 is required for normal pollen development in Arabidopsis thaliana. Plant Journal 40: 979995.
  • Raes J, Rohde A, Christensen JH, Van de Peer Y, Boerjan W. 2003. Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiology 133: 10511071.
  • Romero I, Fuertes A, Benito MJ, Malpica JM, Leyva A, Paz-Ares J. 1998. More than 80 R2R3-MYB regulatory genes in the genome of Arabidopsis thaliana. Plant Journal 14: 273284.
  • Rose MD, Winston FM, Heiter P. 1990. Methods in yeast genetics: a laboratory course manual, Vol. 19. Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press.
  • Ruden DM, Ma J, Li Y, Wood K, Ptashne M. 1991. Generating yeast transcriptional activators containing no yeast protein sequences. Nature 350: 250252.
  • Saathoff AJ, Sarath G, Chow EK, Dien BS, Tobias CM, Herrera-Estrella A. 2011. Downregulation of cinnamyl-alcohol dehydrogenase in switchgrass by RNA silencing results in enhanced glucose release after cellulase treatment. PLoS ONE 6: 804807.
  • Sadowski I, Ma J, Triezenberg S, Ptashne M. 1988. Gal4-VP16 is an unusually potent transcriptional activator. Nature 335: 563564.
  • Sarath G, Baird LM, Vogel KP, Mitchell RB. 2007. Internode structure and cell wall composition in maturing tillers of switchgrass (Panicum virgatum. L). Bioresource Technology 98: 29852992.
  • Schmer MR, Vogel KP, Mitchell RB, Perrin RK. 2008. Net energy of cellulosic ethanol from switchgrass. Proceedings of the National Academy of Sciences, USA 105: 464469.
  • Sheen J. 2001. Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiology 127: 14661475.
  • Shen H, Fu C, Xiao X, Ray T, Tang Y, Wang Z, Chen F. 2009a. Developmental control of lignification in stems of lowland switchgrass variety Alamo and the effects on saccharification efficiency. BioEnergy Research 2: 233245.
  • Shen H, Yin Y, Chen F, Xu Y, Dixon R. 2009b. A bioinformatic analysis of NAC genes for plant cell wall development in relation to lignocellulosic bioenergy production. BioEnergy Research 2: 217232.
  • Somleva MN, Snell KD, Beaulieu JJ, Peoples OP, Garrison BR, Patterson NA. 2008. Production of polyhydroxybutyrate in switchgrass, a value-added co-product in an important lignocellulosic biomass crop. Plant Biotechnology Journal 6: 663678.
  • Somleva MN, Tomaszewski Z, Conger BV. 2002. Agrobacterium-mediated genetic transformation of switchgrass. Crop Science 42: 20802087.
  • Sonbol F-M, Fornalé S, Capellades M, Encina A, Touriño S, Torres J-L, Rovira P, Ruel K, Puigdomènech P, Rigau J et al. 2009. The maize ZmMYB42 represses the phenylpropanoid pathway and affects the cell wall structure, composition and degradability in Arabidopsis thaliana. Plant Molecular Biology 70: 283296.
  • Sparkes IA, Runions J, Kearns A, Hawes C. 2006. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protocols 1: 20192025.
  • Springer NM, Stupar RM. 2007. Allelic variation and heterosis in maize: how do two halves make more than a whole? Genome Research 17: 264.
  • Stracke R, Werber M, Weisshaar B. 2001. The R2R3-MYB gene family in Arabidopsis thaliana. Current Opinion in Plant Biology 4: 447456.
  • Tamagnone L, Merida A, Parr A, Mackay S, Culianez-Macia FA, Roberts K, Martin C. 1998. The AmMYB308 and AmMYB330 transcription factors from antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell 10: 135154.
  • Tobias CM, Sarath G, Twigg P, Lindquist E, Pangilinan J, Penning BW, Barry K, McCann MC, Carpita NC, Lazo GR. 2008. Comparative genomics in switchgrass using 61,585 high-quality expressed sequence tags. The Plant Genome 1: 111124.
  • Tobias CM, Twigg P, Hayden DM, Vogel KP, Mitchell RM, Lazo GR, Chow EK, Sarath G. 2005. Analysis of expressed sequence tags and the identification of associated short tandem repeats in switchgrass. Theoretical and Applied Genetics 111: 956964.
  • Wang H, Avci U, Nakashima J, Hahn MG, Chen F, Dixon RA. 2010. Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants. Proceedings of the National Academy of Sciences, USA 107: 2233822343.
  • Wang YS, Yoo CM, Blancaflor EB. 2008. Improved imaging of actin filaments in transgenic Arabidopsis plants expressing a green fluorescent protein fusion to the C and N termini of the fimbrin actin binding domain 2. New Phytologist 177: 525536.
  • Williams PRD, Inman D, Aden A, Heath GA. 2009. Environmental and sustainability factors associated with next-generation biofuels in the US: what do we really know? Environmental Science & Technology 43: 47634775.
  • Wullschleger SD, Davis EB, Borsuk ME, Gunderson CA, Lynd LR. 2010. Biomass production in switchgrass across the United States: database description and determinants of yield. Agronomy Journal 102: 11581168.
  • Xi Y, Ge Y, Wang ZY. 2009. Genetic transformation of switchgrass. Methods in Molecular Biology 581: 5359.
  • Zhang F, Barboric M, Blackwell TK, Peterlin BM. 2003. A model of repression: CTD analogs and PIE-1 inhibit transcriptional elongation by P-TEFb. Genes & Development 17: 748758.
  • Zhao Q, Dixon RA. 2011. Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends in Plant Science 16: 227233.
  • Zhao J, Zhang W, Zhao Y, Gong X, Guo L, Zhu G, Wang X, Gong Z, Schumaker KS, Guo Y. 2007. SAD2, an importin -like protein, is required for UV-B response in Arabidopsis by mediating MYB4 nuclear trafficking. Plant Cell 19: 38053818.
  • Zhong R, Lee C, Ye Z-H. 2010. Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis. Trends in Plant Science 15: 625632.
  • Zhou J, Lee C, Zhong R, Ye ZH. 2009. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21: 248266.
  • Zhou R, Jackson L, Shadle G, Nakashima J, Temple S, Chen F, Dixon RA. 2010. Distinct cinnamoyl CoA reductases involved in parallel routes to lignin in Medicago truncatula. Proceedings of the National Academy of Sciences, USA 107: 1780317808.