SEARCH

SEARCH BY CITATION

References

  • Boardman C, Gauci V, Watson J, Blake S, Beerling D. 2011. Contrasting wetland CH4 emission response to simulated glacial atmospheric CO2 in temperate bogs and fens. New Phytologist 192: 898911.
  • Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C. 2006. The carbon balance of North American wetlands. Wetlands 26: 889916.
  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D et al. 2007. Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KV, Tignor M, Miller HL, eds. Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, UK & New York, NY, USA: Cambridge University Press, 499587.
  • Forster PRV, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J et al. 2007. Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KV, Tignor M, Miller HL, eds. Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, UK & New York, NY, USA: Cambridge University Press, 129234.
  • Galand PE, Yrjälä K, Conrad R. 2010. Stable carbon isotope fractionation during methanogenesis in three boreal peatland ecosystems. Biogeosciences 7: 38933900.
  • van Groenigen KJ, Osenberg CW, Hungate BA. 2011. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 475: 214216.
  • Hines ME, Duddleston KN, Rooney-Varga JN, Fields D, Chanton JP. 2008. Uncoupling of acetate degradation from methane formation in Alaskan wetlands: connections to vegetation distribution. Global Biogeochemical Cycles 22:GB2017, doi: 10.1029/2006GB002903.
  • Keller JK, White JR, Bridgham SD, Pastor J. 2004. Climate change effects on carbon and nitrogen mineralization in peatlands through changes in soil quality. Global Change Biology 10: 10531064.
  • Laanbroek HJ. 2010. Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review. Annals of Botany 105: 141153.
  • Lipson DA, Jha M, Raab TK, Oechel WC. 2010. Reduction of iron (III) and humic substances plays a major role in anaerobic respiration in an Arctic peat soil. Journal of Geophysical Research 115: G00I06, doi: 10.1029/2009JG001147.
  • Loulergue L, Schilt A, Sapahni R, Masson-Delmotte V, Blunier T, Lemieux B, Barnola J-M, Stocker TF, Chappellaz J. 2011. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453: 383386.
  • Megonigal JP, Hines ME, Visscher PT. 2004. Anaerobic metabolism: linkages to trace gases and aerobic processes. In: Schlesinger WH, ed. Biogeochemistry. Oxford, UK: Elsevier-Pergamon, 317424.
  • Norby RJ, Luo Y. 2004. Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytologist 162: 281293.
  • Tang J, Zhuang Q, Shannon RD, White JR. 2010. Quantifying wetland methane emissions with process-based models of different complexities. Biogeosciences 7: 61216171.
  • Vile MA, Bridgham SD, Wieder RK. 2003. Response of anaerobic carbon mineralization rates to sulfate amendments in a boreal peatland. Ecological Applications 13: 720734.
  • White JR, Shannon RD, Weltzin JF, Pastor J, Bridgham SD. 2008. Effects of soil warming and drying on methane cycling in a northern peatland mesocosm study. Journal of Geophysical Research 113: G00A06, doi: 10.1029/2007JG000609.