SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    V. D. Rajput, Y. Chen, M. Ayup, Effects of high salinity on physiological and anatomical indices in the early stages of Populus euphratica growth, Russian Journal of Plant Physiology, 2015, 62, 2, 229

    CrossRef

  2. 2
    ANDREA POLLE, SHAOLIANG CHEN, On the salty side of life: molecular, physiological and anatomical adaptation and acclimation of trees to extreme habitats, Plant, Cell & Environment, 2015, 38, 4
  3. 3
    Yazhen Ma, Ting Xu, Dongshi Wan, Tao Ma, Sheng Shi, Jianquan Liu, Quanjun Hu, The salinity tolerant poplar database (STPD): a comprehensive database for studying tree salt-tolerant adaption and poplar genomics, BMC Genomics, 2015, 16, 1

    CrossRef

  4. 4
    Zacharoula Kostopoulou, Ioannis Therios, Growth and inorganic composition of ‘Nova’ mandarin plants grafted on two commercial rootstocks in response to salinity and silicon, Acta Physiologiae Plantarum, 2014, 36, 6, 1363

    CrossRef

  5. 5
    Uwe G. Hacke, Irradiance-induced changes in hydraulic architecture1, Botany, 2014, 92, 6, 437

    CrossRef

  6. 6
    E. Novo-Uzal, J. Gutierrez, T. Martinez-Cortes, F. Pomar, Molecular cloning of two novel peroxidases and their response to salt stress and salicylic acid in the living fossil Ginkgo biloba, Annals of Botany, 2014, 114, 5, 923

    CrossRef

  7. 7
    Dejuan Euring, Hua Bai, Dennis Janz, Andrea Polle, Nitrogen-driven stem elongation in poplar is linked with wood modification and gene clusters for stress, photosynthesis and cell wall formation, BMC Plant Biology, 2014, 14, 1

    CrossRef

  8. 8
    Qun-jie Zhang, Li-zhi Gao, The complete chloroplast genome sequence of desert poplar (Populus euphratica), Mitochondrial DNA, 2014, 1

    CrossRef

  9. 9
    Jing Zhuang, Jian Zhang, Xi-Lin Hou, Feng Wang, Ai-Sheng Xiong, Transcriptomic, Proteomic, Metabolomic and Functional Genomic Approaches for the Study of Abiotic Stress in Vegetable Crops, Critical Reviews in Plant Sciences, 2014, 33, 2-3, 225

    CrossRef

  10. 10
    G. Guerriero, K. Sergeant, J.-F. Hausman, Wood biosynthesis and typologies: a molecular rhapsody, Tree Physiology, 2014, 34, 8, 839

    CrossRef

  11. 11
    Synan Abuqamar, Suad Ajeb, Arjun Sham, Mohamed Rizq Enan, Rabah Iratni, A mutation in the expansin-like A2 gene enhances resistance to necrotrophic fungi and hypersensitivity to abiotic stress in Arabidopsis thaliana, Molecular Plant Pathology, 2013, 14, 8
  12. 12
    LENKA PLAVCOVÁ, UWE G. HACKE, ADRIANA M. ALMEIDA-RODRIGUEZ, ERYANG LI, CARL J. DOUGLAS, Gene expression patterns underlying changes in xylem structure and function in response to increased nitrogen availability in hybrid poplar, Plant, Cell & Environment, 2013, 36, 1
  13. 13
    Tao Ma, Junyi Wang, Gongke Zhou, Zhen Yue, Quanjun Hu, Yan Chen, Bingbing Liu, Qiang Qiu, Zhuo Wang, Jian Zhang, Kun Wang, Dechun Jiang, Caiyun Gou, Lili Yu, Dongliang Zhan, Ran Zhou, Wenchun Luo, Hui Ma, Yongzhi Yang, Shengkai Pan, Dongming Fang, Yadan Luo, Xia Wang, Gaini Wang, Juan Wang, Qian Wang, Xu Lu, Zhe Chen, Jinchao Liu, Yao Lu, Ye Yin, Huanming Yang, Richard J. Abbott, Yuxia Wu, Dongshi Wan, Jia Li, Tongming Yin, Martin Lascoux, Stephen P. DiFazio, Gerald A. Tuskan, Jun Wang, Liu Jianquan, Genomic insights into salt adaptation in a desert poplar, Nature Communications, 2013, 4,

    CrossRef

  14. 14
    K. Behnke, A. Ghirardo, D. Janz, B. Kanawati, J. Esperschutz, I. Zimmer, P. Schmitt-Kopplin, U. Niinemets, A. Polle, J. P. Schnitzler, M. Rosenkranz, Isoprene function in two contrasting poplars under salt and sunflecks, Tree Physiology, 2013, 33, 6, 562

    CrossRef

  15. 15
    A. Polle, D. Janz, T. Teichmann, V. Lipka, Poplar genetic engineering: promoting desirable wood characteristics and pest resistance, Applied Microbiology and Biotechnology, 2013, 97, 13, 5669

    CrossRef

  16. You have free access to this content16
    Brian E. Ellis, Bringing trees into the fuel line, New Phytologist, 2012, 194, 1