SEARCH

SEARCH BY CITATION

References

  • Abgrall P, Nguyen N-T. 2009. Nanofluidics. Boston, MA, USA: Artech House.
  • Bailey IW. 1913. The preservative treatment of wood. II. The structure of the pit membranes in the tracheids of conifers and their relation to the penetration of gases, liquids, and finely divided solids into green and seasoned wood. Forestry Quarterly 11: 1220.
  • Bauch JW, Liese W, Schultze R. 1972. The morphological variability of the bordered pit membranes in gymnosperms. Wood Science and Technology 6: 165184.
  • Choat B, Brodie TW, Cobb AR, Zwieniecki MA, Holbrook NM. 2006. Direct measurements of intervessel pit membrane hydraulic resistance in two angiosperm tree species. American Journal of Botany 93: 8831000.
  • Choat B, Cobb AR, Jansen S. 2008. Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. New Phytologist 177: 608626.
  • Colin S. 2010. Microfluidics. Hoboken, NJ, USA: John Wiley & Sons.
  • Delzon S, Douthe C, Sala A, Cochard H. 2010. Mechanism of water-stress induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal capillary-seeding. Plant, Cell & Environment 33: 21012111.
  • Domec J-C, Lachenbruch B, Meinzer FC. 2006. Bordered pit structure and function determine spatial patterns of air-seeding thresholds in xylem of Douglas-fir (Pseudotsuga menziesii; Pinaceae) trees. American Journal of Botany 93: 15881600.
  • Domec J-C, Meinzer FC, Lachenbruch B, Housset J. 2007. Dynamic variation in sapwood specific conductivity in six woody species. Tree Physiology 27: 13891400.
  • Hacke UG, Jansen S. 2009. Embolism resistance of three boreal conifer species varies with pit structure. New Phytologist 182: 675686.
  • Hacke UG, Sperry JS, Pittermann J. 2004. Analysis of circular bordered pit function. II. Gymnosperm tracheids with torus–margo pit membranes. American Journal of Botany 91: 386500.
  • Jansen S, Choat B, Pletsers A. 2009. Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. American Journal of Botany 96: 409418.
  • Lancashire JR, Ennos AR. 2002. Modelling the hydrodynamic resistance of bordered pits. Journal of Experimental Botany 53: 14851493.
  • Munson BR, Young DF, Okiishi TH. 1990. Fundamentals of fluid mechanics. New York, NY, USA: John Wiley and Sons.
  • Petty JA, Preston RD. 1969. The dimensions and number of pit membrane pores in conifer wood. Proceedings of the Royal Society of London. Series B, Biological Sciences 172: 137151.
  • Pittermann J, Choat B, Jansen S, Stuart SA, Lynn L, Dawson TE. 2010. The relationships between xylem safety and hydraulic efficiency in the Cupressaceae: the evolution of pit membrane form and function. Plant Physiology 153: 19191931.
  • Pittermann J, Sperry JS, Hacke UG, Wheeler JK, Sikkema EH. 2005. Torus–margo pits help conifers compete with angiosperms. Science 310: 1924.
  • Schoonmaker AL, Hacke UG, Landhäusser SM, Lieffers VJ, Tyree MT. 2010. Hydraulic acclimation to shading in boreal conifers for varying shade tolerance. Plant, Cell & Environment 33: 382393.
  • Schulte PJ, Gibson AC. 1988. Hydraulic conductance and tracheid anatomy in six species of extant seed plants. Canadian Journal of Botany – Revue Canadienne de Botanique 66: 10731079.
  • Sharp KV, Adrian RJ, Santiago JG, Molho JI. 2005. Liquid flows in microchannels. In: Gad-el-Hak M, ed. The MEMS handbook, Vol 1. Boca Raton, FL, USA: CRC Press, 10.110.45.
  • Sperry JS, Tyree MT. 1990. Water-stress-induced embolism in three species of conifers. Plant, Cell & Environment 13: 427436.
  • Valli A, Koponen A, Vesala T, Timonen J. 2002. Simulations of water flow through bordered pits of conifer xylem. Journal of Statistical Physics 107: 121142.
  • Vogel S. 2003. Comparative biomechanics: life’s physical world. Princeton, NJ, USA: Princeton University Press.
  • Zimmermann MH. 1983. Xylem structure and the ascent of sap. New York, NY, USA: Springer.