Lateral root initiation: one step at a time


  • Ive De Smet was a finalist for the 2011 New Phytologist Tansley Medal for excellence in plant science, which recognises an outstanding contribution to research in plant science by an individual in the early stages of their career; see the Editorial by Dolan, 193: 821–822.

Author for correspondence:
Ive De Smet
Tel: +44 1159 516681


Plant growth relies heavily on a root system that is hidden belowground, which develops post-embryonically through the formation of lateral roots. The de novo formation of lateral root organs requires tightly coordinated asymmetric cell division of a limited number of pericycle cells located at the xylem pole. This typically involves the formation of founder cells, followed by a number of cellular changes until the cells divide and give rise to two unequally sized daughter cells. Over the past few years, our knowledge of the regulatory mechanisms behind lateral root initiation has increased dramatically. Here, I will summarize these recent advances, focusing on the prominent role of auxin and cell cycle activity, and elaborating on the three key steps of pericycle cell priming, founder cell establishment and asymmetric cell division. Taken together, recent findings suggest a tentative model in which successive auxin response modules are crucial for lateral root initiation, and additional factors provide more layers of control.