SEARCH

SEARCH BY CITATION

References

  • Abramoff MD. 2004. Image processing with ImageJ. Biophotonics International 11: 3642.
  • Achard P, Renou JP, Berthome R, Harberd NP, Genschik P. 2008. Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Current Biology 18: 656660.
  • Aguilar PS, Hernandez-Arriaga AM, Cybulski LE, Erazo AC, de Mendoza D. 2001. Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO Journal 20: 16811691.
  • Asai S, Yoshioka H. 2009. Nitric oxide as a partner of reactive oxygen species participates in disease resistance to necrotrophic pathogen Botrytis cinerea in Nicotiana benthamiana. Molecular Plant-Microbe Interactions 22: 619629.
  • Asselbergh B, Curvers K, Franca SC, Audenaert K, Vuylsteke M, Van Breusegem F, Hofte M. 2007. Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiology 144: 18631877.
  • van Baarlen P, Woltering EJ, Staats M, van Kan JAL. 2007. Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control. Molecular Plant Pathology 8: 4154.
  • Bessire M, Chassot C, Jacquat AC, Humphry M, Borel S, Petetot JMC, Metraux JP, Nawrath C. 2007. A permeable cuticle in Arabidopsis leads to a strong resistance to Botrytis cinerea. EMBO Journal 26: 21582168.
  • Block A, Schmelz E, Jones JB, Klee HJ. 2005. Coronatine and salicylic acid: the battle between Arabidopsis and Pseudomonas for phytohormone control. Molecular Plant Pathology 6: 7983.
  • Boch J, Joardar V, Gao L, Robertson TL, Lim M, Kunkel BN. 2002. Identification of Pseudomonas syringae pv. tomato genes induced during infection of Arabidopsis thaliana. Molecular Microbiology 44: 7388.
  • Brooks DM, Bender CL, Kunkel BN. 2005. The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana. Molecular Plant Pathology 6: 629639.
  • Brooks DM, Hernandez-Guzman G, Kloek AP, Alarcon-Chaidez F, Sreedharan A, Rangaswamy V, Penaloza-Vazquez A, Bender CL, Kunkel BN. 2004. Identification and characterization of a well-defined series of coronatine biosynthetic mutants of Pseudomonas syringae pv. tomato DC3000. Molecular Plant-Microbe Interactions 17: 162174.
  • Calo L, Garcia I, Gotor C, Romero LC. 2006. Leaf hairs influence phytopathogenic fungus infection and confer an increased resistance when expressing a trichoderma alpha-1,3-glucanase. Journal of Experimental Botany 57: 39113920.
  • Chang C, Kwok SF, Bleecker AB, Meyerowitz EM. 1993. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262: 539544.
  • Chassot C, Nawrath C, Metraux J-P. 2008. The cuticle: not only a barrier for plant defence, a novel defence syndrome in plants with cuticular defects. Plant Signal Behaviour 3: 142144.
  • Choi J, Huh SU, Kojima M, Sakakibara H, Paek KH, Hwang I. 2010. The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Developmental Cell 19: 284295.
  • Cumming G, Fidler F, Vaux DL. 2007. Error bars in experimental biology. Journal of Cell Biology 177: 711.
  • Curvers K, Seifi H, Mouille G, de Rycke R, Asselbergh B, Van Hecke A, Vanderschaeghe D, Hofte H, Callewaert N, Van Breusegem F et al. 2010. Abscisic acid deficiency causes changes in cuticle permeability and pectin composition that influence tomato resistance to Botrytis cinerea. Plant Physiology 154: 847860.
  • Denby KJ, Jason LJM, Murray SL, Last RL. 2005. ups1, an Arabidopsis thaliana camalexin accumulation mutant defective in multiple defence signalling pathways. Plant Journal 41: 673684.
  • Denby KJ, Kumar P, Kliebenstein DJ. 2004. Identification of Botrytis cinerea susceptibility loci in Arabidopsis thaliana. Plant Journal 38: 473486.
  • Desikan R, Horak J, Chaban C, Mira-Rodado V, Witthoft J, Elgass K, Grefen C, Cheung MK, Meixner AJ, Hooley R et al. 2008. The histidine kinase AHK5 integrates endogenous and environmental signals in Arabidopsis guard cells. PLoS ONE 3: 15.
  • Doss RP, Potter SW, Chastagner GA, Christian JK. 1993. Adhesion of non-germinated Botrytis cinerea conidia to several substrata. Applied and Environmental Microbiology 59: 17861791.
  • Ferrari S, Galletti R, Denoux C, De Lorenzo G, Ausubel FM, Dewdney J. 2007. Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires phytoalexin deficient3. Plant Physiology 144: 367379.
  • Ferrari S, Plotnikova JM, De Lorenzo G, Ausubel FM. 2003. Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant Journal 35: 193205.
  • Forcat S, Bennett MH, Mansfield JW, Grant MR. 2008. A rapid and robust method for simultaneously measuring changes in the phytohormones ABA, JA and SA in plants following biotic and abiotic stress. Plant Methods 4: 8.
  • Forst SA, Roberts DL. 1994. Signal transduction by the EnvZ-OmpR phosphotransfer system in bacteria. Research in Microbiology 145: 363373.
  • Galletti R, Denoux C, Gambetta S, Dewdney J, Ausubel FM, De Lorenzo G, Ferrari S. 2008. The AtrbohD-mediated oxidative burst elicited by oligogalacturonides in Arabidopsis is dispensable for the activation of defense responses effective against Botrytis cinerea. Plant Physiology 148: 16951706.
  • Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P. 2000. Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 12: 11171126.
  • Govrin EM, Levine A. 2000. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Current Biology 10: 751757.
  • Grefen C, Harter K. 2004. Plant two-component systems: principles, functions, complexity and cross talk. Planta 219: 733742.
  • Hejátko J, Pernisová M, Eneva T, Palme K, Brzobohatý B. 2003. The putative sensor histidine kinase CKI1 is involved in female gametophyte development in Arabidopsis. Molecular Genetics and Genomics 269: 443453.
  • Higuchi M, Pischke MS, Mähönen AP, Miyawaki K, Hashimoto Y, Seki M, Kobayashi M, Shinozaki K, Kato T, Tabata S et al. 2004. In planta functions of the Arabidopsis cytokinin receptor family. Proceedings of the National Academy of Sciences, USA 101: 88218826.
  • Hwang D, Chen HC, Sheen J. 2002. Two-component signal transduction pathways in Arabidopsis. Plant Physiology 129: 500515.
  • Ishiga Y, Uppalapati S, Ishiga T, Bender C. 2010. Exogenous coronatine, but not coronafacic acid or methyl jasmonate, restores the disease phenotype of a coronatine-defective mutant of Pseudomonas syringae pv. tomato on tomato seedlings. Journal of General Plant Pathology 76: 188195.
  • Iwama A, Yamashino T, Tanaka Y, Sakakibara H, Kakimoto T, Sato S, Kato T, Tabata S, Nagatani A, Mizuno T. 2007. AHK5 histidine kinase regulates root elongation through an ETR1-dependent abscisic acid and ethylene signaling pathway in Arabidopsis thaliana. Plant and Cell Physiology 48: 375380.
  • Jeon J, Kim NY, Kim S, Kang NY, Novak O, Ku S-J, Cho C, Lee DJ, Lee E-J, Strnad M et al. 2010. A subset of cytokinin two-component signaling system plays a role in cold temperature stress. Journal of Biological Chemistry 285: 2337123386.
  • Kanesaki Y, Yamamoto H, Paithoonrangsarid K, Shoumskaya M, Suzuki I, Hayashi H, Murata N. 2007. Histidine kinases play important roles in the perception and signal transduction of hydrogen peroxide in the cyanobacterium, Synechocystis sp PCC 6803. Plant Journal 49: 313324.
  • Katagiri F, Thilmony R, He SY. 2002. The Arabidopsis thaliana–Pseudomonas syringae interaction. The Arabidopsis Book 1 : e0039. doi:10.1199/tab.0039.
  • Katiyar-Agarwal S, Zhu J, Kim K, Agarwal M, Fu X, Huang A, Zhu JK. 2006. The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proceedings of the National Academy of Sciences, USA 103: 1881618821.
  • Kliebenstein DJ, Rowe HC, Denby KJ. 2005. Secondary metabolites influence Arabidopsis/Botrytis interactions: variation in host production and pathogen sensitivity. Plant Journal 44: 2536.
  • Lazniewska J, Macioszek VK, Lawrence CB, Kononowicz AK. 2010. Fight to the death: Arabidopsis thaliana defense response to fungal necrotrophic pathogens. Acta Physiologiae Plantarum 32: 110.
  • Li XZ, Starratt AN, Cuppels DA. 1998. Identification of tomato leaf factors that activate toxin gene expression in Pseudomonas syringae pv. tomato DC3000. Phytopathology 88: 10941100.
  • Lu D, He P, Shan L. 2010. Bacterial effectors target BAK1-associated receptor complexes – one stone two birds. Communicative and Integrative Biology 3: 8083.
  • Melotto M, Underwood W, Koczan J, Nomura K, He SY. 2006. Plant stomata function in innate immunity against bacterial invasion. Cell 126: 969980.
  • Mengiste T, Chen X, Salmeron J, Dietrich R. 2003. The Botrytis susceptible1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell 15: 25512565.
  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment 33: 453467.
  • Munns R. 2002. Comparative physiology of salt and water stress. Plant, Cell & Environment 25: 239250.
  • Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59: 651681.
  • Paithoonrangsarid K, Shoumskaya MA, Kanesaki Y, Satoh S, Tabata S, Los DA, Zinchenko VV, Hayashi H, Tanticharoen M, Suzuki I et al. 2004. Five histidine kinases perceive osmotic stress and regulate distinct sets of genes in Synechocystis. Journal of Biological Chemistry 279: 5307853086.
  • Porra RJ, Thompson WA, Kriedemann PE. 1989. Determination of accurate extinction coefficients and simultaneous-equations for assaying chlorophyll-a and chlorophyll-b extracted with four different solvents – verification of the concentration of chlorophyll standards by atomic-absorption spectroscopy. Biochimica Et Biophysica Acta 975: 384394.
  • Posas F, Wurgler-Murphy SM, Maeda T, Witten EA, Thai TC, Saito H. 1996. Yeast hog1 map kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 “two-component” osmosensor. Cell 86: 865875.
  • Rico A, Preston GM. 2008. Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Molecular Plant-Microbe Interactions 21: 269282.
  • Rossall S, Mansfield JW, Price NC. 1977. Effect of reduced wyerone acid on antifungal activity of phytoalexin wyerone acid against Botrytis fabae. Journal of General Microbiology 102: 203205.
  • Schaller GE, Kieber JJ, Shiu S-H. 2008. Two-component signaling elements and histidyl-aspartyl phosphorelays. The Arabidopsis Book 6 : e0112. doi:10.1199/tab.0112.
  • Segmuller N, Kokkelink L, Giesbert S, Odinius D, van Kan J, Tudzynski P. 2008. NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Molecular Plant-Microbe Interactions 21: 808819.
  • Sharp RE, LeNoble ME. 2002. ABA, ethylene and the control of shoot and root growth under water stress. Journal of Experimental Botany 53: 3337.
  • Singh KK. 2000. The Saccharomyces cerevisiae SLN1P-SSK1P two-component system mediates response to oxidative stress and in an oxidant-specific fashion. Free Radical Biology and Medicine 29: 10431050.
  • Spoel SH, Johnson JS, Dong X. 2007. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proceedings of the National Academy of Sciences, USA 104: 1884218847.
  • Suzuki I, Kanesaki Y, Hayashi H, Hall JJ, Simon WJ, Slabas AR, Murata N. 2005. The histidine kinase HIK34 is involved in thermotolerance by regulating the expression of heat shock genes in Synechocystis. Plant Physiology 138: 14091421.
  • Thomma B, Eggermont K, Broekaert WF, Cammue BPA. 2000. Disease development of several fungi on Arabidopsis can be reduced by treatment with methyl jasmonate. Plant Physiology and Biochemistry 38: 421427.
  • Thomma B, Eggermont K, Penninckx I, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WF. 1998. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proceedings of the National Academy of Sciences, USA 95: 1510715111.
  • Thomma B, Eggermont K, Tierens K, Broekaert WF. 1999. Requirement of functional Ethylene-Insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiology 121: 10931101.
  • de Torres Zabala M, Bennett MH, Truman WH, Grant MR. 2009. Antagonism between salicylic and abscisic acid reflects early host-pathogen conflict and moulds plant defence responses. Plant Journal 59: 375386.
  • de Torres Zabala M, Truman W, Bennett MH, Lafforgue G, Mansfield JW, Egea PR, Bogre L, Grant M. 2007. Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO Journal 26: 14341443.
  • Tran LSP, Shinozaki K, Yamaguchi-Shinozaki K. 2010. Role of cytokinin responsive two-component system in ABA and osmotic stress signalings. Plant Signal Behaviour 5: 148150.
  • Tran LSP, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K. 2007. Functional analysis of AHK1/AtHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proceedings of the National Academy of Sciences, USA 104: 2062320628.
  • Turrion-Gomez JL, Benito EP. 2011. Flux of nitric oxide between the necrotrophic pathogen Botrytis cinerea and the host plant. Molecular Plant Pathology 12: 606616.
  • Underwood W, Melotto M, He SY. 2007. Role of plant stomata in bacterial invasion. Cellular Microbiology 9: 16211629.
  • Unger C, Kleta S, Jandl G, Tiedemann AV. 2005. Suppression of the defence-related oxidative burst in bean leaf tissue and bean suspension cells by the necrotrophic pathogen Botrytis cinera. Journal of Phytopathology 153: 1526.
  • Uppalapati SR, Ishiga Y, Wangdi T, Kunkel BN, Anand A, Mysore KS, Bender CL. 2007. The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000. Molecular Plant-Microbe Interactions 20: 955965.
  • Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K. 1999. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11: 17431754.
  • Urao T, Yamaguchi-Shinozaki K, Shinozaki K. 2000. Two-component systems in plant signal transduction. Trends in Plant Science 5: 6774.
  • Urao T, Yamaguchi-Shinozaki K, Shinozaki K. 2001. Plant histidine kinases: an emerging picture of two-component signal transduction in hormone and environmental responses. Science’s Signal Transduction Knowledge Environment 2001: re18.
  • Verhage A, van Wees SCM, Pieterse CMJ. 2010. Plant immunity: it’s the hormones talking, but what do they say? Plant Physiology 154: 536540.
  • Veronese P, Nakagami H, Bluhm B, AbuQamar S, Chen X, Salmeron J, Dietrich RA, Hirt H, Mengiste T. 2006. The membrane-anchored Botrytis-induced kinase1 plays distinct roles in Arabiodpis resistance to necrotrophic and biotrophic pathogens. The Plant Cell 18: 257273.
  • Vicedo B, Flors V, Leyva MD, Finiti I, Kravchuk Z, Real MD, Garcia-Agustin P, Gonzalez-Bosch C. 2009. Hexanoic acid-induced resistance against Botrytis cinerea in tomato plants. Molecular Plant-Microbe Interactions 22: 14551465.
  • Wang Y, Wang T, Li K, Li X. 2008. Genetic analysis of involvement of ETR1 in plant response to salt and osmotic stress. Plant Growth Regulation 54: 261269.
  • Williamson B, Tudzynsk B, Tudzynski P, van Kan JAL. 2007. Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology 8: 561580.
  • Wu YR, Deng ZY, Lai JB, Zhang YY, Yang CP, Yin BJ, Zhao QZ, Zhang L, Li Y, Yang CW et al. 2009. Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Research 19: 12791290.
  • Xiao SY, Brown S, Patrick E, Brearley C, Turner JG. 2003. Enhanced transcription of the Arabidopsis disease resistance genes RPW8.1 and RPW8.2 via a salicylic acid-dependent amplification circuit is required for hypersensitive cell death. Plant Cell 15: 3345.
  • Zeng WQ, He SY. 2010. A prominent role of the flagellin receptor flagellin-sensing2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis. Plant Physiology 153: 11881198.
  • Zeng WQ, Melotto M, He SY. 2010. Plant stomata: a checkpoint of host immunity and pathogen virulence. Current Opinion in Biotechnology 21: 599603.
  • Zhao XC, Schaller GE. 2004. Effect of salt and osmotic stress upon expression of the ethylene receptor ETR1 in Arabidopsis thaliana. FEBS Letters 562: 189192.
  • Zhu JK. 2002. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology 53: 247273.
  • Zhu JK. 2003. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology 6: 441445.
  • Zimmerli L, Metraux JP, Mauch-Mani B. 2001. Beta-aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiology 126: 517523.
  • Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, Boller T. 2004. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428: 764767.