SEARCH

SEARCH BY CITATION

References

  • Abel S, Oeller PW, Theologis A. 1994. Early auxin-induced genes encode short-lived nuclear proteins. Proceedings of the National Academy of Sciences, USA 91: 326330.
  • Abeles S, Morgan PW, Saltveit ME. 1992. Ethylene in plant biology. San Diego, CA, USA: Academic Press.
  • Achard P, Vriezen WH, Van Der Straeten D, Harberd NP. 2003. Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell 15: 28162825.
  • Aeschbacher RA, Hauser MT, Feldmann KA, Benfey PN. 1995. The sabre gene is required for normal-cell expansion in Arabidopsis. Genes & Development 9: 330340.
  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen HM, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R et al. 2003. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653657.
  • An FY, Zhao QO, Ji YS, Li WY, Jiang ZQ, Yu XC, Zhang C, Han Y, He WR, Liu YD et al. 2010. Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-Box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22: 23842401.
  • Arioli T, Peng LC, Betzner AS, Burn J, Wittke W, Herth W, Camilleri C, Hofte H, Plazinski J, Birch R et al. 1998. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279: 717720.
  • Beckers GJM, Jaskiewicz M, Liu YD, Underwood WR, He SY, Zhang SQ, Conrath U. 2009. Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21: 944953.
  • Binder BM, Mortimore LA, Stepanova AN, Ecker JR, Bleecker AB. 2004a. Short-term growth responses to ethylene in Arabidopsis seedlings are EIN3/EIL1 independent. Plant Physiology 136: 29212927.
  • Binder BM, O’Malley RC, Wang WY, Moore JM, Parks BM, Spalding EP, Bleecker AB. 2004b. Arabidopsis seedling growth response and recovery to ethylene. A kinetic analysis. Plant Physiology 136: 29132920.
  • Binder BM, Rodriguez FI, Bleecker AB. 2010. The copper transporter RAN1 is essential for biogenesis of ethylene receptors in Arabidopsis. Journal of Biological Chemistry 285: 3726337270.
  • Binder BM, Walker JM, Gagne JM, Emborg TJ, Hemmann G, Bleecker AB, Vierstra RD. 2007. The Arabidopsis EIN3 binding F-box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling. Plant Cell 19: 509523.
  • Bisson MMA, Bleckmann A, Allekotte S, Groth G. 2009. EIN2, the central regulator of ethylene signalling, is localized at the ER membrane where it interacts with the ethylene receptor ETR1. Biochemical Journal 424: 16.
  • Bisson MMA, Groth G. 2010. New insight in ethylene signaling: autokinase activity of ETR1 modulates the interaction of receptors and EIN2. Molecular Plant 3: 882889.
  • Bradford KJ, Yang SF. 1980. Xylem transport of 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor, in waterlogged tomato plants. Plant Physiology 65: 322326.
  • Brady SM, Orlando DA, Lee JY, Wang JY, Koch J, Dinneny JR, Mace D, Ohler U, Benfey PN. 2007. A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318: 801806.
  • Cara B, Giovannoni JJ. 2008. Molecular biology of ethylene during tomato fruit development and maturation. Plant Science 175: 106113.
  • Cartwright DA, Brady SM, Orlando DA, Strumfels B, Benfey PN. 2009. Reconstructing spatiotemporal gene expression data from partial observations. Bioinformatics 25: 25812587.
  • Chaabouni S, Jones B, Delalande C, Wang H, Li ZG, Mila I, Frasse P, Latche A, Pech JC, Bouzayen M. 2009. Sl-IAA3, a tomato Aux/IAA at the crossroads of auxin and ethylene signalling involved in differential growth. Journal of Experimental Botany 60: 13491362.
  • Chen YF, Gao ZY, Kerris RJ, Wang WY, Binder BM, Schaller GE. 2010. Ethylene receptors function as components of high-molecular-mass protein complexes in Arabidopsis. PLoS ONE 5: e8640. doi: 10.1371/journal.pone.0008640.
  • Cho K, Agrawal GK, Jwa NS, Kubo A, Rakwal R. 2009. Rice OsSIPK and its orthologs: a “central master switch” for stress responses. Biochemical and Biophysical Research Communications 379: 649653.
  • Christian M, Luthen H. 2000. New methods to analyse auxin-induced growth I: classical auxinology goes Arabidopsis. Plant Growth Regulation 32: 107114.
  • Christians MJ, Gingerich DJ, Hansen M, Binder BM, Kieber JJ, Vierstra RD. 2009. The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling type-2 ACC synthase levels. Plant Journal 57: 332345.
  • Christians MJ, Larsen PB. 2007. Mutational loss of the prohibitin AtPHB3 results in an extreme constitutive ethylene response phenotype coupled with partial loss of ethylene-inducible gene expression in Arabidopsis seedlings. Journal of Experimental Botany 58: 22372248.
  • Clark KL, Larsen PB, Wang XX, Chang C. 1998. Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proceedings of the National Academy of Sciences, USA 95: 54015406.
  • Cosgrove DJ. 2005. Growth of the plant cell wall. Nature Reviews Molecular Cell Biology 6: 850861.
  • Crowell EF, Timpano H, Desprez T, Franssen-Verheijen T, Emons AM, Hofte H, Vernhettes S. 2011. Differential regulation of cellulose orientation at the inner and outer face of epidermal cells in the Arabidopsis hypocotyl. Plant Cell 23: 25922605.
  • Dan H, Imaseki H, Wasteneys GO, Kazama H. 2003. Ethylene stimulates endoreduplication but inhibits cytokinesis in cucumber hypocotyl epidermis. Plant Physiology 133: 17261731.
  • Darwin C, Darwin F. 1881. The power of movement in plants. London, UK: J. Murray.
  • De Cnodder T, Vissenberg K, Van Der Straeten D, Verbelen JP. 2005. Regulation of cell length in the Arabidopsis thaliana root by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid: a matter of apoplastic reactions. New Phytologist 168: 541550.
  • De Grauwe L, Vandenbussche F, Tietz O, Palme K, Van Der Straeten D. 2005. Auxin, ethylene and brassinosteroids: tripartite control of growth in the Arabidopsis hypocotyl. Plant and Cell Physiology 46: 827836.
  • De Paepe A, Vuylsteke M, Van Hummelen P, Zabeau M, Van Der Straeten D. 2004. Transcriptional profiling by cDNA-AFLP and microarray analysis reveals novel insights into the early response to ethylene in Arabidopsis. Plant Journal 39: 537539.
  • De Paepe A, De Grauwe L, Bertrand S, Smalle J, Van Der Straeten D. 2005. The Arabidopsis mutant eer2 has enhanced ethylene responses in the light. Journal of Experimental Botany 56: 24092420.
  • De Paepe A, Van Der Straeten D. 2005. Ethylene biosynthesis and signaling: an overview. Plant Hormones 72: 399430.
  • Derbyshire P, Findlay K, McCann MC, Roberts K. 2007. Cell elongation in Arabidopsis hypocotyls involves dynamic changes in cell wall thickness. Journal of Experimental Botany 58: 20792089.
  • Desikan R, Last K, Harrett-Williams R, Tagliavia C, Harter K, Hooley R, Hancock JT, Neill SJ. 2006. Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis. Plant Journal 47: 907916.
  • Dohmann EMN, Levesque MP, De Veylder L, Reichardt I, Juergens G, Schmid M, Schwechheimer C. 2008. The Arabidopsis COP9 signalosome is essential for G2 phase progression and genomic stability. Development 135: 20132022.
  • Dong CH, Jang M, Scharein B, Malach A, Rivarola M, Liesch J, Groth G, Hwang I, Chang C. 2010. Molecular association of the Arabidopsis ETR1 ethylene receptor and a regulator of ethylene signaling, RTE1. Journal of Biological Chemistry 285: 4070640713.
  • Dugardeyn J, Van Der Straeten D. 2008. Ethylene: fine-tuning plant growth and development by stimulation and inhibition of elongation. Plant Science 175: 5970.
  • Dugardeyn J, Vandenbussche F, Van Der Straeten D. 2008. To grow or not to grow: what can we learn on ethylene–gibberellin cross-talk by in silico gene expression analysis? Journal of Experimental Botany 59: 116.
  • Ellis C, Karafyllidis I, Wasternack C, Turner JG. 2002. The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14: 15571566.
  • Ellison CT, Vandenbussche F, Van Der Straeten D, Harmer SL. 2011. XAP5 CIRCADIAN TIMEKEEPER regulates ethylene responses in aerial tissues of Arabidopsis. Plant Physiology 155: 988999.
  • Finlayson SA, Foster KR, Reid DM. 1991. Transport and metabolism of 1-aminocyclopropane-1-carboxylic acid in sunflower (Helianthus annuus L.) seedlings. Plant Physiology 96: 13601367.
  • Friml J, Benkova E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jurgens G et al. 2002a. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108: 661673.
  • Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K. 2002b. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415: 806809.
  • Fu XD, Harberd NP. 2003. Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421: 740743.
  • Fuhrer J, Fuhrerfries CB. 1985. Formation and transport of 1-aminocyclopropane-1-carboxylic acid in pea plants. Phytochemistry 24: 1922.
  • Gane R. 1934. Production of ethylene by some ripening fruits. Nature 134: 1008.
  • Gagne JM, Smalle J, Gingerich DJ, Walker JM, Yoo SD, Yanagisawa S, Vierstra RD. 2004. Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proceedings of the National Academy of Sciences, USA 101: 68036808.
  • Gallie DR, Geisler-Lee J, Chen JF, Jolley B. 2009. Tissue-specific expression of the ethylene biosynthetic machinery regulates root growth in maize. Plant Molecular Biology 69: 195211.
  • Gao Z, Chen YF, Randlett MD, Zhao XC, Findell JL, Kieber JJ, Schaller GE. 2003. Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. Journal of Biological Chemistry 278: 3472534732.
  • Glover BJ, Torney K, Wilkins CG, Hanke DE. 2008. CYTOKININ INDEPENDENT-1 regulates levels of different forms of cytokinin in Arabidopsis and mediates response to nutrient stress. Journal of Plant Physiology 165: 251261.
  • Guo D, Gao XR, Li H, Zhang T, Chen G, Huang PB, An LJ, Li N. 2008. EGY1 plays a role in regulation of endodermal plastid size and number that are involved in ethylene-dependent gravitropism of light-grown Arabidopsis hypocotyls. Plant Molecular Biology 66: 345360.
  • Guo HW, Ecker JR. 2003. Plant responses to ethylene gas are mediated by SCF (EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115: 667677.
  • Guzman P, Ecker JR. 1990. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2: 513523.
  • Hacham Y, Holland N, Butterfield C, Ubeda-Tomas S, Bennett MJ, Chory J, Savaldi-Goldstein S. 2011. Brassinosteroid perception in the epidermis controls root meristem size. Development 138: 839848.
  • Hahn A, Harter K. 2009. Mitogen-activated protein kinase cascades and ethylene: signaling, biosynthesis, or both? Plant Physiology 149: 12071210.
  • Hahn A, Zimmermann R, Wanke D, Harter K, Edelmann HG. 2008. The root cap determines ethylene-dependent growth and development in maize roots. Molecular Plant 1: 359367.
  • Han L, Li GJ, Yang KY, Mao GH, Wang RQ, Liu YD, Zhang SQ. 2010. Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis. Plant Journal 64: 114127.
  • Harpham NVJ, Berry AW, Knee EM, Rovedahoyos G, Raskin I, Sanders IO, Smith AR, Wood CK, Hall MA. 1991. The effect of ethylene on the growth and development of wild-type and mutant Arabidopsis thaliana (L) Heynh. Annals of Botany 68: 5561.
  • He W, Brumos J, Li H, Ji Y, Ke M, Gong X, Zeng Q, Li W, Zhang X, An F et al. 2011. A small-molecule screen identifies L-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. Plant Cell 23: 39443960.
  • Hess N, Klode M, Anders M, Sauter M. 2011. The hypoxia responsive transcription factor genes ERF71/HRE2 and ERF73/HRE1 of Arabidopsis are differentially regulated by ethylene. Physiologia Plantarum 143: 4149.
  • Hirayama T, Kieber JJ, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso JM, Dailey WP, Dancis A, Ecker JR. 1999. Responsive-to-antagonist1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97: 383393.
  • Hogetsu T, Shibaoka H, Shimokor M. 1974. Involvement of cellulose synthesis in actions of gibberellin and kinetin on cell expansion – 2,6-dichlorobenzonitrile as a new cellulose-synthesis inhibitor. Plant and Cell Physiology 15: 389393.
  • Joo S, Liu Y, Lueth A, Zhang SQ. 2008. MAPK phosphorylation-induced stabilization of ACS6 protein is mediated by the non-catalytic C-terminal domain, which also contains the cis-determinant for rapid degradation by the 26S proteasome pathway. Plant Journal 54: 129140.
  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR. 1993. Ctr1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72: 427441.
  • Kiss HG, Koning RE. 1989. Endogenous levels and transport of 1-aminocyclopropane-1-carboxylic acid in stamens of Ipomoea nil (Convolvulaceae). Plant Physiology 90: 157161.
  • Knox JP. 1995. The extracellular-matrix in higher plants. 4. Developmentally-regulated proteoglycans and glycoproteins of the plant-cell surface. Faseb Journal 9: 10041012.
  • Konishi M, Yanagisawa S. 2008. Ethylene signaling in Arabidopsis involves feedback regulation via the elaborate control of EBF2 expression by EIN3. Plant Journal 55: 821831.
  • Kowalska M, Tian F, Smehilova M, Galuszka P, Frebort I, Napier R, Dale N. 2011. Prussian Blue acts as a mediator in a reagentless cytokinin biosensor. Analytica Chimica Acta 701: 218223.
  • Le J, Vandenbussche F, Van Der Straeten D, Verbelen JP. 2001. In the early response of Arabidopsis roots to ethylene, cell elongation is up- and down-regulated and uncoupled from differentiation. Plant Physiology 125: 519522.
  • Lewis DR, Negi S, Sukumar P, Muday GK. 2011. Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Development 138: 34853495.
  • Li JM, Nam KH, Vafeados D, Chory J. 2001. BIN2, a new brassinosteroid-insensitive locus in Arabidopsis. Plant Physiology 127: 1422.
  • Marchant A, Kargul J, May ST, Muller P, Delbarre A, Perrot-Rechenmann C, Bennett MJ. 1999. AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. Embo Journal 18: 20662073.
  • Maris A, Kaewthai N, Eklof JM, Miller JG, Brumer H, Fry SC, Verbelen JP, Vissenberg K. 2011. Differences in enzymic properties of five recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of Arabidopsis thaliana. Journal of Experimental Botany 62: 261271.
  • Martin DN, Proebsting WM, Parks TD, Dougherty WG, Lange T, Lewis MJ, Gaskin P, Hedden P. 1996. Feed-back regulation of gibberellin biosynthesis and gene expression in Pisum sativum L. Planta 200: 159166.
  • Menke FLH, van Pelt JA, Pieterse CMJ, Klessig DF. 2004. Silencing of the mitogen-activated protein kinase MPK6 compromises disease resistance in Arabidopsis. Plant Cell 16: 897907.
  • Nakano T, Suzuki K, Fujimura T, Shinshi H. 2006. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology 140: 411432.
  • Neljubow D. 1901. Ueber die horizontale Nutation der Stengel von Pisum sativum and einiger anderen Pflanzen. Beihefte Botanischen Zentralblatt 10: 128139.
  • Nishitani K, Vissenberg K. 2007. Roles of the XTH protein family in the expanding cell. In: Verbelen JP, Vissenberg K, eds. The expanding cell. Plant Cell Monographs, vol 5. Berlin/Heidelberg/New York: Springer, 89116.
  • Oeller PW, Theologis A. 1995. Induction kinetics of the nuclear proteins encoded by the early indoleacetic acid-inducible genes, Ps-Iaa4/5 and Ps-Iaa6, in Pea (Pisum sativum L.). Plant Journal 7: 3748.
  • Oeller PW, Wong LM, Taylor LP, Pike DA, Theologis A. 1991. Reversible inhibition of tomato fruit senescence by antisense RNA. Science 254: 437439.
  • Olmedo G, Guo HW, Gregory BD, Nourizadeh SD, Aguilar-Henonin L, Li HJ, An FY, Guzman P, Ecker JR. 2006. ETHYLENE-INSENSITIVE5 encodes a 5’ -> 3’ exoribonuclease required for regulation of the EIN3-targeting F-box proteins EBF1/2. Proceedings of the National Academy of Sciences, USA 103: 1328613293.
  • Ortega-Martinez O, Pernas M, Carol RJ, Dolan L. 2007. Ethylene modulates stem cell division in the Arabidopsis thaliana root. Science 317: 507510.
  • Paredez AR, Somerville CR, Ehrhardt DW. 2006. Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312: 14911495.
  • Pelletier S, Van Orden J, Wolf S, Vissenberg K, Delacourt J, Ndong YA, Pelloux J, Bischoff V, Urbain A, Mouille G et al. 2010. A role for pectin de-methylesterification in a developmentally regulated growth acceleration in dark-grown Arabidopsis hypocotyls. New Phytologist 188: 726739.
  • Petersson SV, Johansson AI, Kowalczyk M, Makoveychuk A, Wang JY, Moritz T, Grebe M, Benfey PN, Sandberg G, Ljung K. 2009. An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 21: 16591668.
  • Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P. 2003. EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell 115: 679689.
  • Potuschak T, Vansiri A, Binder BM, Lechner E, Vierstra RD, Genschik P. 2006. The exoribonuclease XRN4 is a component of the ethylene response pathway in Arabidopsis. Plant Cell 18: 30473057.
  • Qiao H, Chang KN, Yazaki J, Ecker JR. 2009. Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes & Development 23: 512521.
  • Raz V, Ecker JR. 1999. Regulation of differential growth in the apical hook of Arabidopsis. Development 126: 36613668.
  • Refregier G, Pelletier S, Jaillard D, Hofte H. 2004. Interaction between wall deposition and cell elongation in dark-grown hypocotyl cells in Arabidopsis. Plant Physiology 135: 959968.
  • Resnick JS, Wen CK, Shockey JA, Chang CR. 2006. REVERSION-TO-ETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis. Proceedings of the National Academy of Sciences, USA 103: 79177922.
  • Resnick JS, Rivarola M, Chang C. 2008. Involvement of RTE1in conformational changes promoting ETR1 ethylene receptor signaling in Arabidopsis. Plant Journal 56: 423431.
  • Rivarola M, McClellan CA, Resnick JS, Chang C. 2009. ETR1-specific mutations distinguish ETR1 from other Arabidopsis ethylene receptors as revealed by genetic interaction with RTE1. Plant Physiology 150: 547551.
  • Robles LM, Wampole JS, Christians MJ, Larsen PB. 2007. Arabidopsis enhanced ethylene response 4 encodes an EIN3-interacting TFIID transcription factor required for proper ethylene response, including ERF1 induction. Journal of Experimental Botany 58: 26272639.
  • Rodrigues-Pousada RA, Derycke R, Dedonder A, Vancaeneghem W, Engler G, Van Montagu M, Van Der Straeten D. 1993. The Arabidopsis 1-aminocyclopropane-1-carboxylate synthase gene-1 is expressed during early development. Plant Cell 5: 897911.
  • Rodriguez FI, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleecker AB. 1999. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283: 996998.
  • Roman G, Lubarsky B, Kieber JJ, Rothenberg M, Ecker JR. 1995. Genetic analysis of ethylene signal-transduction in Arabidopsis thaliana– 5 novel mutant loci integrated into a stress-response pathway. Genetics 139: 13931409.
  • Ruzicka K, Ljung K, Vanneste S, Podhorska R, Beeckman T, Friml J, Benkova E. 2007. Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19: 21972212.
  • Sadanandom A, Napier RM. 2010. Biosensors in plants. Current Opinion in Plant Biology 13: 736743.
  • Saibo NJM, Vriezen WH, Beemster GTS, Van Der Straeten D. 2003. Growth and stomata development of Arabidopsis hypocotyls are controlled by gibberellins and modulated by ethylene and auxins. Plant Journal 33: 9891000.
  • Santner A, Estelle M. 2009. Recent advances and emerging trends in plant hormone signalling. Nature 459: 10711078.
  • Savaldi-Goldstein S, Peto C, Chory J. 2007. The epidermis both drives and restricts plant shoot growth. Nature 446: 199202.
  • Schenck D, Christian M, Jones A, Luthen H. 2010. Rapid auxin-induced cell expansion and gene expression: a four-decade-old question revisited. Plant Physiology 152: 11831185.
  • Seifert GJ, Blaukopf C. 2010. Irritable walls: the plant extracellular matrix and signaling. Plant Physiology 153: 467478.
  • Sinnott EW, Bloch R. 1939. Changes in intercellular relationships during the growth and differentiation in living plant tissues. American Journal of Botany 26: 625634.
  • Skirycz A, Claeys H, De Bodt S, Oikawa A, Shinoda S, Andriankaja M, Maleux K, Eloy NB, Coppens F, Yoo SD et al. 2011. Pause-and-stop: the effects of osmotic stress on cell proliferation during early leaf development in Arabidopsis and a role for ethylene signaling in cell cycle arrest. Plant Cell 23: 18761888.
  • Smalle J, Haegman M, Kurepa J, VanMontagu M, Van Der Straeten D. 1997. Ethylene can stimulate Arabidopsis hypocotyl elongation in the light. Proceedings of the National Academy of Sciences, USA 94: 27562761.
  • Smalle J, Van Der Straeten D. 1997. Ethylene and vegetative development. Physiologia Plantarum 100: 593605.
  • Staal M, De Cnodder T, Simon D, Vandenbussche F, Van Der Straeten D, Verbelen JP, Elzenga T, Vissenberg K. 2011. Apoplastic alkalinization is instrumental for the inhibition of cell elongation in the Arabidopsis root by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. Plant Physiology 155: 20492055.
  • Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM. 2005. A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17: 22302242.
  • Stepanova AN, Yun J, Likhacheva AV, Alonso JM. 2007. Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19: 21692185.
  • Swarup R, Kramer EM, Perry P, Knox K, Leyser HMO, Haseloff J, Beemster GTS, Bhalerao R, Bennett MJ. 2005. Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nature Cell Biology 7: 10571065.
  • Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Beemster GTS, Sandberg G, Bhalerao R, Ljung K, Bennett MJ. 2007. Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19: 21862196.
  • Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K. 2007. The mitogen-activated protein kinase cascade MKK3–MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell 19: 805818.
  • Thain SC, Vandenbussche F, Laarhoven LJJ, Dowson-Day MJ, Wang ZY, Tobin EM, Harren FJM, Millar AJ, Van Der Straeten D. 2004. Circadian rhythms of ethylene emission in Arabidopsis. Plant Physiology 136: 37513761.
  • Thomann A, Lechner E, Hansen M, Dumbliauskas E, Parmentier Y, Kieber J, Scheres B, Genschik P. 2009. Arabidopsis CULLIN3 genes regulate primary root growth and patterning by ethylene-dependent and -independent mechanisms. Plos Genetics 5: e1000328.
  • Tsang DL, Edmond C, Harrington JL, Nuhse TS. 2011. Cell wall integrity controls root elongation via a general 1-aminocyclopropane-1-carboxylic acid-dependent, ethylene-independent pathway. Plant Physiology 156: 596604.
  • Tsuchisaka A, Theologis A. 2004a. Heterodimeric interactions among the 1-amino-cyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family. Proceedings of the National Academy of Sciences, USA 101: 22752280.
  • Tsuchisaka A, Theologis A. 2004b. Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiology 136: 29823000.
  • Tsuchisaka A, Yu GX, Jin HL, Alonso JM, Ecker JR, Zhang XM, Gao S, Theologis A. 2009. A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana. Genetics 183: 9791003.
  • Ubeda-Tomas S, Swarup R, Coates J, Swarup K, Laplaze L, Beemster GTS, Hedden P, Bhalerao R, Bennett MJ. 2008. Root growth in Arabidopsis requires gibberellin/DELLA signalling in the endodermis. Nature Cell Biology 10: 625628.
  • Vandenbussche F, Petrasek J, Zadnikova P, Hoyerova K, Pesek B, Raz V, Swarup R, Bennett M, Zazimalova E, Benkova E et al. 2010. The auxin influx carriers AUX1 and LAX3 are involved in auxin–ethylene interactions during apical hook development in Arabidopsis thaliana seedlings. Development 137: 597606.
  • Vandenbussche F, Smalle J, Le J, Saibo NJM, De Paepe A, Chaerle L, Tietz O, Smets R, Laarhoven LJJ, Harren FJM et al. 2003a. The Arabidopsis mutant alh1 illustrates a cross talk between ethylene and auxin. Plant Physiology 131: 12281238.
  • Vandenbussche F, Vancompernolle B, Rieu I, Ahmad M, Phillips A, Moritz T, Hedden P, Van Der Straeten D. 2007. Ethylene-induced Arabidopsis hypocotyl elongation is dependent on but not mediated by gibberellins. Journal of Experimental Botany 58: 42694281.
  • Van Der Straeten D, Djudzman A, Van Caeneghem W, Smalle J, Van Montagu M. 1993. Genetic and physiological analysis of a new locus in Arabidopsis that confers resistance to 1-aminocyclopropane-1-carboxylic acid and ethylene and specifically affects the ethylene signal-transduction pathway. Plant Physiology 102: 401408.
  • Verbelen JP, Le J, Vissenberg K, De Cnodder T, Vandenbussche F, Sugimoto K, Van Der Straeten D. 2008. Microtubules and the control of cell elongation in Arabidopsis roots. In: Blume YB, Baird WV, Yemets AI, Breviario D, eds. Plant Cytoskeleton: A Key Tool for Agro-Biotechnology. Dordrecht, the Netherlands: Springer, 7390.
  • Vissenberg K, Martinez-Vilchez IM, Verbelen JP, Miller JG, Fry SC. 2000. In vivo colocalization of xyloglucan endotransglycosylase activity and its donor substrate in the elongation zone of Arabidopsis roots. Plant Cell 12: 12291237.
  • Vriezen WH, Zhou ZY, Van Der Straeten D. 2003. Regulation of submergence-induced enhanced shoot elongation in Oryza sativa L. Annals of Botany 91: 263270.
  • Weizbauer R, Peters WS, Schulz B. 2011. Geometric constraints and the anatomical interpretation of twisted plant organ phenotypes. Frontiers in Plant Science 2: 62.
  • Wiedemeier AMD, Judy-March JE, Hocart CH, Wasteneys GO, Williamson RE, Baskin TI. 2002. Mutant alleles of Arabidopsis RADIALLY SWOLLEN 4 and 7 reduce growth anisotropy without altering the transverse orientation of cortical microtubules or cellulose microfibrils. Development 129: 48214830.
  • Wilkinson S, Davies WJ. 2009. Ozone suppresses soil drying- and abscisic acid (ABA)-induced stomatal closure via an ethylene-dependent mechanism. Plant, Cell & Environment 32: 949959.
  • Woeste KE, Kieber JJ. 2000. A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype. Plant Cell 12: 443455.
  • Xu J, Li Y, Wang Y, Liu HX, Lei L, Yang HL, Liu GQ, Ren DT. 2008. Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. Journal of Biological Chemistry 283: 2699627006.
  • Xu SL, Rahman A, Baskin TI, Kieber JJ. 2008. Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis. Plant Cell 20: 30653079.
  • Yang CY, Hsu FC, Li JP, Wang NN, Shih MC. 2011. The AP2/ERF transcription factor AtERF73/HRE1 modulates ethylene responses during hypoxia in Arabidopsis. Plant Physiology 156: 202212.
  • Yoo SD, Cho YH, Tena G, Xiong Y, Sheen J. 2008. Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451: 789795.
  • Zadnikova P, Petrasek J, Marhavy P, Raz V, Vandenbussche F, Ding ZJ, Schwarzerova K, Morita MT, Tasaka M, Hejatko J et al. 2010. Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development 137: 607617.
  • van Zanten M, Voesenek LACJ, Peeters AJM, Millenaar FF. 2009. Hormone- and light-mediated regulation of heat-induced differential petiole growth in Arabidopsis. Plant Physiology 151: 14461458.
  • Zhao Q, Guo HW. 2011. Paradigms and paradox in the ethylene signaling pathway and interaction network. Molecular Plant 4: 626634.
  • Zhong GV, Burns JK. 2003. Profiling ethylene-regulated gene expression in Arabidopsis thaliana by microarray analysis. Plant Molecular Biology 53: 117131.
  • Zhou CJ, Cai ZH, Guo YF, Gan SS. 2009. An Arabidopsis mitogen-activated protein kinase cascade, MKK9-MPK6, plays a role in leaf senescence. Plant Physiology 150: 167177.