UGT87A2, an Arabidopsis glycosyltransferase, regulates flowering time via FLOWERING LOCUS C

Authors

  • Bo Wang,

    1. The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China, School of Life Science, Shandong University, No. 27 Shanda South Road, Jinan, Shandong 250100, China
    Search for more papers by this author
  • Shang-Hui Jin,

    1. The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China, School of Life Science, Shandong University, No. 27 Shanda South Road, Jinan, Shandong 250100, China
    Search for more papers by this author
  • Hong-Qun Hu,

    1. The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China, School of Life Science, Shandong University, No. 27 Shanda South Road, Jinan, Shandong 250100, China
    Search for more papers by this author
  • Yan-Guo Sun,

    1. The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China, School of Life Science, Shandong University, No. 27 Shanda South Road, Jinan, Shandong 250100, China
    Search for more papers by this author
  • Yan-Wen Wang,

    1. The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China, School of Life Science, Shandong University, No. 27 Shanda South Road, Jinan, Shandong 250100, China
    Search for more papers by this author
  • Ping Han,

    1. The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China, School of Life Science, Shandong University, No. 27 Shanda South Road, Jinan, Shandong 250100, China
    Search for more papers by this author
  • Bing-Kai Hou

    1. The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China, School of Life Science, Shandong University, No. 27 Shanda South Road, Jinan, Shandong 250100, China
    Search for more papers by this author

Author for correspondence:
Bing-Kai Hou
Tel: +86 531 88364726
Email: bkhou@sdu.edu.cn

Summary

  • Family 1 glycosyltransferases comprise the greatest number of glycosyltransferases found in plants. The widespread occurrence and diversity of glycosides throughout the plant kingdom underscore the importance of these glycosyltransferases.
  • Here, we describe the identification and characterization of a late-flowering Arabidopsis (Arabidopsis thaliana) mutant, in which a putative family 1 glycosyltransferase gene, UGT87A2, was disrupted. The role and possible mechanism of UGT87A2 in the regulation of flowering were analyzed by molecular, genetic and cellular approaches.
  • The ugt87a2 mutant exhibited late flowering in both long and short days, and its flowering was promoted by vernalization and gibberellin. Furthermore, the mutant flowering phenotype was rescued by the wild-type UGT87A2 gene in complementation lines. Interestingly, the expression of the flowering repressor FLOWERING LOCUS C was increased substantially in the mutant, but decreased to the wild-type level in complementation lines, with corresponding changes in the expression levels of the floral integrators and floral meristem identity genes. The expression of UGT87A2 was developmentally regulated and its protein products were distributed in both cytoplasm and nucleus.
  • Our findings imply that UGT87A2 regulates flowering time via the flowering repressor FLOWERING LOCUS C. These data highlight an important role for the family 1 glycosyltransferases in the regulation of plant flower development.

Ancillary