SEARCH

SEARCH BY CITATION

References

  • Alfano JR, Collmer A. 1997. The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins and death. Journal of Bacteriology 179: 56555662.
  • Asselbergh B, De Vleesschauwer D, Höfte M. 2008. Global switches and fine-tuning-ABA modulates plant pathogen defense. Molecular Plant Microbe Interactions 21: 709719.
  • Barton-Willis PA, Wang MC, Holliday MR, Long MR, Keen NT. 1984. Purification and composition of lipopolysaccharides from Pseudomonas syringae pathovar syringae. Physiological Plant Pathology 25: 387398.
  • Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series A 57: 289300.
  • Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C. 2000. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. The Plant Cell 12: 23832394.
  • Boucher CA, van Gijsegem F, Barberis PA, Arlat M, Zischek C. 1987. Pseudomonas solanacearum genes controlling both pathogenicity on tomato and hypersensitivity on tobacco are clustered. Journal of Bacteriology 169: 56265632.
  • Bowling SA, Guo A, Cao H, Gordon AS, Klessig DF, Dong X. 1994. A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. The Plant Cell 6: 18451857.
  • Cao H, Bowling SA, Gordon AS, Dong X. 1994. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. The Plant Cell 6: 15831592.
  • Cao FJ, Yoshioka K, Desveaux D. 2011. The roles of ABA in plant-pathogen interactions. Journal of Plant Research 124: 489499.
  • Carrasco L, Vazquez D, Hernandez-Lucas P, Carbonero C, Garcia-Olmedo F. 1981. Thionins: plant peptides that modify membrane permeability in cultured mammalian cells. European Journal of Biochemistry 116: 185189.
  • Century KS, Holub EB, Staskawicz BJ. 1995. NDR1, a locus of Arabidopsis thaliana that is required for disease resistance to both a bacterial and a fungal pathogen. Proceedings of the National Academy of Science, USA 92: 65976601.
  • Chan YL, Prasad V, Sanjaya, Chen KH, Liu PC, Chan MT, Cheng CP. 2005. Transgenic tomato plants expressing an Arabidopsis thionin (Thi2.1) driven by fruit-inactive promoter battle against phytopathogenic attack. Planta 221: 386393.
  • Cunnac S, Boucher C, Genin S. 2004. Characterization of the cis-acting regulatory element controlling HrpB-mediated activation of the type III secretion system and effector genes in Ralstonia solanacearum. Journal of Bacteriology 186: 23092318.
  • Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M, Boucher C, Somssich I, Genin S, Marco Y. 2003. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proceedings of the National Academy of Science, USA 100: 80248029.
  • Deslandes L, Olivier J, Theulieres F, Hirsch J, Feng DX, Bittner-Eddy P, Beynon J, Marco Y. 2002. Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proceedings of the National Academy of Science, USA 99: 24042209.
  • Deslandes L, Pileur F, Liaubet L, Camut S, Can C, Williams K, Holub E, Beynon J, Arlat M, Marco Y. 1998. Genetic characterization of RRS1, a recessive locus in Arabidopsis thaliana that confers resistance to the bacterial soilborne pathogen Ralstonia solanacearum. Molecular Plant Microbe Interactions 11: 659667.
  • Eisen MB, Spellman PT, Brown PO, Botstein D. 1998. Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Science, USA 95: 1486314868.
  • Etchebar C, Trigalet-Demery D, van Gijsegem F, Vasse J, Trigalet A. 1998. Xylem colonization by an HrpB mutant of Ralstonia solanacearum is a key factor for the efficient biological control of tomato bacterial wilt. Molecular Plant Microbe Interactions 11: 869877.
  • Fan J, Hill L, Crooks C, Poerner P, Lamb C. 2009. Abscisic acid has a key role in modulating diverse plant-pathogen interactions. Plant Physiology 150: 17501761.
  • Feys BF, Benedetti CE, Penfold CN, Turner JG. 1994. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male-sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. The Plant Cell 6: 751759.
  • Frey P, Prior P, Marie C, Kotoujansky A, Trigalet-Demery D, Trigalet A. 1994. Hrp mutants of Pseudomonas solanacearum as potential biocontrol agents of tomato bacterial wilt. Applied and Environmental Microbiology 60: 31753181.
  • Frey P, Trigalet-Demery D, Trigalet A. 1993. hrp mutants of Pseudomonas solanacearum for the biological control of tomato bacterial wilt. In: Hartman GL, Hayward AC, eds. Bacterial Wilt. Proceedings of an international conference held at Kaohsiung, Taiwan. Canberra, ACT, Australia: ACIAR, 257260.
  • Genin S. 2010. Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. New Phytologist 187: 920928.
  • Genin S, Gough CL, Zischek C, Boucher CA. 1992. Evidence that the hrpB gene encodes a positive regulator of pathogenicity genes from Pseudomonas solanacearum. Molecular Microbiology 6: 30653076.
  • Glazebrook J, Ausubel FM. 1994. Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. Proceedings of the National Academy of Science, USA 91: 89558959.
  • Glazebrook J, Zook M, Mert F, Kagan I, Rogers EE, Crute IR, Holub EB, Hammerschmidt R, Ausubel FM. 1997. Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. Genetics 146: 381392.
  • Godiard L, Ragueh F, Froissard D, Legay JJ, Grosset J, Chartier Y, Meyer Y, Marco Y. 1990. Analysis of the synthesis of several pathogenesis-related proteins in tobacco leaves infiltrated with water and with compatible and incompatible isolates of Pseudomonas solanacearum. Molecular Plant Microbe Interactions 3: 207213.
  • Graham TL, Sequeira L, Huang TS. 1977. Bacterial lipopolysaccharides as inducers of disease resistance in tobacco. Applied and Environmental Microbiology 34: 424432.
  • Guzman P, Ecker JR. 1990. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. The Plant Cell 2: 513523.
  • Hayward AC. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annual. Review of Phytopathology 29: 6587.
  • Hernandez-Blanco C, Feng DX, Hu J, Sanchez-Vallet A, Deslandes L, Llorente F, Berrocal-Lobo MC, Keller K, Barlet X, Sanchez-Rodrıguez C et al. 2007. Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. The Plant Cell 19: 890903.
  • Hirsch J, Deslandes L, Feng DX, Balagué C, Marco Y. 2002. Delayed symptom development in ein2-1, an Arabidopsis ethylene-insensitive mutant, in response to bacterial wilt caused by Ralstonia solanacearum. Phytopathology 92: 11421148.
  • Hoth S, Morgante M, Sanchez JP, Hanafey MK, Tingey SV, Chua NH. 2002. Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant. Journal of Cell Science 115: 4891900.
  • Hu J, Barlet X, Deslandes L, Hirsch J, Feng DX, Somssich I, Marco Y. 2008. Transcriptional responses of Arabidopsis thaliana during wilt disease caused by the soil-borne phytopathogenic bacterium, Ralstonia solanacearum. PLoS ONE 3: e2589.
  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. 2003. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249264.
  • Jakobek JL, Smith JA, Lindgren PB. 1993. Suppression of bean defense responses by Pseudomonas syringae. The Plant Cell 5: 5763.
  • Kempe J, Sequeira L. 1983. Biological control of bacterial wilt of potatoes: attempts to induce resistance by treating tubers with bacteria. Plant Disease 67: 499503.
  • Knoester M, Pieterse CM, Bol JF, Van Loon LC. 1999. Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signalling at the site of application. Molecular Plant Microbe Interactions 12: 7207.
  • Koornneef M, Reuling G, Karssen CM. 1984. The isolation and characterization of abscisic acid–insensitive mutants of Arabidopsis thaliana. Physiology Plantarum 61: 377383.
  • Laby R, Kincaid M, Kim D, Gibson S. 2000. The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. The Plant Journal 23: 587596.
  • Lawton K, Weymann K, Friedrich L, Vernooij B, Uknes S, Ryals J. 1995. Systemic acquired resistance in Arabidopsis requires salicylic acid but not ethylene. Molecular Plant Microbe Interactions 8: 863870.
  • Leach JE, Sherwood J, Fulton RW, Sequeira L. 1983. Comparison of soluble proteins associated with disease resistance induced by bacterial lipopolysaccharide and viral necrosis. Physiological Plant Pathology 23: 377385.
  • Leeman M, Vanpelt JA, Denouden FM, Heinsbroek M, Bakker PAHM, Schippers B. 1995. Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85: 10211027.
  • Léon-Kloosterziel KM, Gil MA, Ruijs GJ, Jacobsen SE, Olszewski NE, Schwartz SH, Zeevaart JA, Koornneef M. 1996. Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci. Plant Journal 10: 655661.
  • Li Y, Lee KK, Walsh S, Smith C, Hadingham S, Sorefan K, Cawley G, Bevan MW. 2006. Establishing glucose- and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a Relevance Vector Machine. Genome Research 16: 414427.
  • Loeza-Angeles H, Sagrero-Cisneros E, Lara-Zárate L, Villagómez-Gómez E, López-Meza JE, Ochoa-Zarzosa A. 2008. Thionin Thi2.1 from Arabidopsis thaliana expressed in endothelial cells shows antibacterial, antifungal and cytotoxic activity. Biotechnology Letters 30: 17131719.
  • Mauch-Mani B, Mauch F. 2005. The role of abscisic acid in plant–pathogen interactions. Current Opinion in Plant Biology 8: 409414.
  • Melotto M, Underwood W, Koczan J, Nomura K, He SY. 2006. Plant stomata function in innate immunity against bacterial invasion. Cell 126: 969980.
  • Milling A, Babujee L, Allen C. 2010. Ralstonia solanacearum extracellular polysaccharide is a specific elicitor of defense responses in wilt-resistance tomato plants. PLoS ONE 6: e15853.
  • Molina A, Ahl-Goy P, Fraile A, Sanchez-Monge R, Garcia-Olmedo F. 1993. Inhibition of bacterial and fungal plant pathogens by thionins of types I and II. Plant Science 92: 169177.
  • Nawrath C, Metraux JP. 1999. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. The Plant Cell 11: 13931404.
  • Newman M-A, von Roepenack E, Daniels M, Dow M. 2000. Lipopolysaccharides and plant responses to phytopathogenic bacteria. Molecular Plant Pathology 1: 2531.
  • Occhialini A, Cunnac S, Reymond N, Genin S, Boucher C. 2005. Genome-wide analysis of gene expression in Ralstonia solanacearum reveals that the hrpB gene acts as a regulatory switch controlling multiple virulence pathways. Molecular Plant Microbe Interactions 18: 93849.
  • Pfund C, Tans-Kersten J, Dunning FM, Alonso JM, Ecker JR, Allen C, Bent A. 2004. Flagellin is not a major defense elicitor in Ralstonia solanacearum cells or extracts applied to Arabidopsis thaliana. Molecular Plant Microbe Interactions 17: 696706.
  • Provart N, Zhu T. 2003. A browser-based functional classification SuperViewer for Arabidopsis genomics. Currents in Computational Molecular Biology 2003: 271272.
  • Raffaele S, Rivas S, Roby D. 2006. An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis. FEBS Letters 580: 34983504.
  • Rathmell W, Sequeira L. 1975. Induced resistance in tobacco leaves: the role of inhibitors of bacterial growth in the intercellular fluid. Physiological Plant Pathology 5: 6573.
  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD. 1996. Systemic acquired resistance. The Plant Cell 8: 18091819.
  • Seo PJ, Xiang F, Qiao M, Park JY, Lee YN, Kim SG, Lee YH, Park WJ, Park CM. 2009. The MYB96 transcription factor mediates abscisic acid signalling during drought stress response in Arabidopsis. Plant Physiology 151: 275289.
  • Sequeira L, Hill L. 1974. Induced resistance in tobacco leaves: the growth of Pseudomonas solanacearum in protected tissues. Physiological Plant Pathology 4: 447455.
  • Shoresh M, Harman GE, Mastouri F. 2010. Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology 48: 2143.
  • Smith J, Offord L, Kibata G, Murimi Z, Trigalet A, Saddler G. 1998. The development of a biological control agent against Ralstonia solanacearum race 3 in Kenya. In: Prior P, Allen C, Elphinstone J, eds. Bacterial wilt disease. Berlin & Heidelberg, Germany: Springer/INRA, 337342.
  • Smyth GK. 2004. Linear models and empirical Bayes for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology 3: 126.
  • Smyth GK. 2005. Limma: linear models for microarray data. In: Gentlemen R, Carey V, Dudoit S, Irizarry R, Huber W, eds. Bioinformatics and computational biology solutions using R and bioconductor. New York, NY, USA: Springer, 397420.
  • Staswick PE, Su W, Howell SH. 1992. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proceedings of the National Academy of Sciences, USA 89: 683740.
  • Tanaka H. 1983. Protection of tobacco and tomato against root infection of Pseudomonas solanacearum by heat-killed bacterial cells. Annals of the Phytopathological Society of Japan 49: 6668.
  • Tanaka H. 1985. Induced resistance in tobacco against bacterial wilt and its possible mechanisms. Bulletin of the Utsuhomiya Tobacco Experimental Station 21: 166.
  • Thoquet P, Olivier J, Sperisen C, Rogowsky P, Laterrot H, Grimsley N. 1996a. Quantitative trait loci determining resistance to bacterial wilt in tomato cultivar Hawaii7996. Molecular Plant Microbe Interactions 9: 826836.
  • Thoquet P, Olivier J, Sperisen C, Rogowsky P, Prior P, Anaïs G, Mangin B, Bazin B, Nazer R, Grimsley N. 1996b. Polygenic resistance of tomato plants to bacterial wilt in the French West Indies. Molecular Plant Microbe Interactions 9: 837842.
  • de Torres-Zabala M, Truman W, Bennett MH, Lafforgue G, Mansfield JW, Rodriguez Egea P, Bögre L, Grant M. 2007. Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO Journal 26: 14341443.
  • Toufighi K, Brady SM, Austin R, Ly E, Provart N. 2005. The Botany Array Resource: e-Northerns, Expression Angling, and promoter analyses. Plant Journal 43: 153163.
  • Trigalet A, Frey P, Trigalet-Demery D. 1994. Biological control of bacterial wilt caused by Pseudomonas solanacearum: state of the art and understanding. In: Hayward AC, Hartman GL, eds. Bacterial wilt, the disease and its causative agent, Pseudomonas solanacearum. Wallingford, UK: CAB International, 225233.
  • Trigalet A, Trigalet-Demery D. 1990. Use of avirulent mutants of Pseudomonas solanacearum for the biological control of bacterial wilt of tomato plants. Physiological and Molecular Plant Pathology 36: 2738.
  • Tuteja N. 2007. Abscissic acid and abiotic stress signalling. Plant Signalling and Behaviour 2: 135138.
  • Van Loon LC, Bakker PAHM, Pieterse CMJ. 1998. Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology 36: 453485.
  • Vlot AC, Klessig DF, Park SW. 2008. Systemic acquired resistance: the elusive signal(s). Current Opinion in Plant Biology 11: 436442.
  • van Wees SC, de Swart EA, van Pelt JA, van Loon LC, Pieterse CM. 2000. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA 97: 87118716.