Arabidopsis RAP2.2 plays an important role in plant resistance to Botrytis cinerea and ethylene responses

Authors

  • Yang Zhao,

    1. College of Agriculture and Biotechnology, China Agricultural University, Beijing 100094, China
    2. State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
    Search for more papers by this author
    • These authors contributed equally to this work.

  • Tong Wei,

    1. State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
    Search for more papers by this author
    • These authors contributed equally to this work.

  • Kang-Quan Yin,

    1. State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
    Search for more papers by this author
  • Zhangliang Chen,

    1. College of Agriculture and Biotechnology, China Agricultural University, Beijing 100094, China
    2. State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
    Search for more papers by this author
  • Hongya Gu,

    1. State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
    2. The National Plant Gene Research Center (Beijing), Beijing 100101, China
    Search for more papers by this author
  • Li-Jia Qu,

    1. State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
    2. The National Plant Gene Research Center (Beijing), Beijing 100101, China
    Search for more papers by this author
  • Genji Qin

    1. State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
    Search for more papers by this author

Author for correspondence:
Genji Qin
Tel: +86 10 6275 2409
Email: qingenji@pku.edu.cn

Summary

  • Ethylene plays a crucial role in plant resistance to necrotrophic pathogens, in which ETHYLENE RESPONSE FACTORs (ERFs) are often involved.
  • Here, we evaluated the role of an ERF transcription factor, RELATED TO AP2 2 (RAP2.2), in Botrytis resistance and ethylene responses in Arabidopsis. We analyzed the resistance of transgenic plants overexpressing RAP2.2 and the T-DNA insertion mutant to Botrytis cinerea. We assessed its role in the ethylene signaling pathway by molecular and genetic approaches.
  • RAP2.2-overexpressing transgenic plants showed increased resistance to B. cinerea, whereas its T-DNA insertion mutant rap2.2-3 showed decreased resistance. Overexpression of RAP2.2 in ethylene insensitive 2 (ein2) and ein3 ein3-like 1 (eil1) mutants restored their resistance to B. cinerea. Both ethylene and Botrytis infection induced the expression of RAP2.2 and the induction was disrupted in ein2 and ein3 eil1 mutants. We identified rap2.12-1 as a T-DNA insertion mutant of RAP2.12, the closest homolog of RAP2.2. The hypocotyls of rap2.2-3 rap2.12-1 double mutants showed ethylene insensitivity. The constitutive triple response in constitutive triple response1 (ctr1) was partially released in the rap2.2-3 rap2.12-1 ctr1 triple mutants.
  • Our findings demonstrate that RAP2.2 functions as an important regulator in Botrytis resistance and ethylene responses.

Ancillary