SEARCH

SEARCH BY CITATION

References

  • Aerts R, Cornelissen JHC, Dorrepaal E, van Logtestijn RSP, Callaghan TV. 2004. Effects of experimentally imposed climate scenarios on flowering phenology and flower production of subarctic bog species. Global Change Biology 10: 15991609.
  • Alatalo JM, Totland Ø. 1997. Response to simulated climatic change in an alpine and subarctic pollen-risk strategist, Silene acaulis. Global Change Biology 3(Suppl 1): 7479.
  • Arft AM, Walker MD, Gurevitch J, Alatalo JM, Bret-Harte MS, Dale M, Diemer M, Gugerli F, Henry GHR, Jones MH et al. 1999. Responses of tundra plants to experimental warming: meta-analysis of the international tundra experiment. Ecological Monographs 69: 491511.
  • Bokhorst SJ, Bjerke W, Bowles FW, Callaghan TV, Phoenix GK. 2008. Impacts of extreme winter warming in the sub-Arctic: growing season responses of dwarf shrub heathland. Global Change Biology 14: 26032612.
  • Bolmgren K, Cowan DP. 2008. Time–size tradeoffs: a phylogenetic comparative study of flowering time, plant height and seed mass in a north-temperate flora. Oikos 117: 424429.
  • Bonsal BR, Zhang X, Vincent LA, Hogg WD. 2001. Characteristics of daily and extreme temperatures over Canada. Journal of Climate 14: 19591976.
  • Byrne M, Ho M, Selvakumaraswamy P, Nguyen HD, Dworjanyn SA, Davis AR. 2009. Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. Proceedings of the Royal Society. B, Biological Sciences, 276: 18831888.
  • Campbell JL, Mitchell MJ, Groffman PM, Christenson LM, Hardy JP. 2005. Winter in northeastern North America: a critical period for ecological processes. Frontier in Ecology and Environment 3: 314322.
  • Chouard P. 1960. Vernalization and its relations to dormancy. Annual Review of Plant Physiology 11: 191238.
  • Conant RT, Drijber RA, Haddix M, Parton WJ, Paul EA, Planet AF, Six J, Steinweg JM. 2008. Sensitivity of organic matter decomposition to warming varies with its quality. Global Change Biology 14: 868877.
  • Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, Heijden MGA et al. 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51: 335380.
  • Du G, Qi W. 2010. Trade-offs between flowering time, plant height, and seed size within and across 11 communities of a QingHai-Tibetan flora. Plant Ecology 209: 321333.
  • ECCAS (Editor Committee of the Chinese Academy of Sciences for Flora of China). 19741999. Flora of China. Beijing, China: Science Press. (in Chinese).
  • Felsenstein J. 1985. Phylogenies and the comparative method. American Naturalist 125: 115.
  • Freckleton RP, Harvey PH, Pagel M. 2002. Phylogenetic analysis and comparative data: a test and review of evidence. American Naturalist 160: 712726.
  • Galen C, Cuba J. 2001. Down the tube: pollinators, predators, and the evolution of flower shape in the alpine skypilot, Polemonium viscosum. Evolution 55: 19631971.
  • Harvey PH, Pagel MD. 1991. The comparative method in evolutionary biology. Oxford, UK: Oxford University Press.
  • Hennessy KJ, Claytongreene K. 1995. Greenhouse warming and vernalization of High-Chill fruit in Southern Australia. Climatic Change 30: 327348.
  • Hideyuki S, Takashi S. 2003. Effects of high temperature interruption during vernalization on the inflorescence formation in turnip plants. Journal of the Japanese Society for Horticultural Science 72: 329334.
  • Hobbie SE, Chapin FS. 1998. The response of tundra plant biomass, aboveground production, nitrogen, and CO2 flux to experimental warming. Ecology 79: 15261544.
  • Hoffmann AA, Camac JS, Williams RJ, Papst W, Jarrad FC, Wahren CH. 2010. Phenological changes in six Australian subalpine plants in response to experimental warming and year-to-year variation. Journal of Ecology 98: 927937.
  • Hovenden MJ, Wills KE, Chaplin RE, Schoor JK, Williams AL, Osanai O, Newton PCD. 2008. Warming and elevated CO2 affect the relationship between seed mass, germinability and seedling growth in Austrodanthonia caespitosa, a dominant Australian grass. Global Change Biology 14: 16331641.
  • Hovenden MJ, Wills KE, Vanderschoor JK, Chaplin RE, Williams AL, Nolan M, Newton PCD. 2007. Flowering, seed production and seed mass in a species-rich temperate grassland exposed to FACE and warming. Australian Journal of Botany 55: 780794.
  • Kennedy AD. 1995. Temperature effects of passive greenhouse apparatus in high-latitude climate change experiments. Functional Ecology 9: 340350.
  • Kudo G, Hirao A. 2006. Habitat-specific responses in the flowering phenology and seed set of alpine plants to climate variation: implications for global-change impacts. Population Ecology 48: 4958.
  • Kudo G, Suzuki S. 2003. Warming effects on growth, production, and vegetation structure of alpine shrubs: a five-year experiment in northern Japan. Oecologia 135: 280287.
  • Li G, Liu Y, Frelich LE, Sun SC. 2011. Experimental warming induces degradation of a Tibetan alpine meadow through trophic interactions. Journal of Applied Ecology 48: 659667.
  • Liu Y, Reich PB, Li G, Sun SC. 2011. Shift phenology and abundance under experimental warming alters trophic relationships and plant reproductive capacity. Ecology 92: 12011207.
  • Lu H, Liu G. 2010. Trends in temperature and precipitation on the Tibetan Plateau, 1961–2005. Climate Research 43: 179190.
  • Marion GM, Henry GHR, Freckman DW, Johnstone J, Jones G, Jones MH, Lévesque E, Molau U, Mølgaard P, Parsons AN et al. 1997. Open-top designs for manipulating field temperature in high-latitude ecosystems. Global Change Biology 3(Suppl 1): 2032.
  • Mearns LO, Giorgi F, McDaniel L, Shields C. 2003. Climate scenarios for the southeastern US based on GCM and regional model simulations. Climatic Change 60: 735.
  • Mitchell JFB. 1990. Greenhouse warming: is the mid-Holocene a good analogue? Journal of Climate Change 3: 11771192.
  • Niklas KJ. 1985. The aerodynamics of wind pollination. The Botanical Review 51: 328386.
  • Niu G, Heins R, Cameron A, Carlson W. 2002. Prevernalization daily light integral and vernalization temperature influence flowering of herbaceous perennials. Horticultural Science 37: 10281031.
  • Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature 401: 877884.
  • Paradis E, Claude J, Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289290.
  • R Development Core Team. 2011. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0. URL http://www.R-project.org.
  • Saavedra F, Inouye DW, Price MV, Harte J. 2003. Changes in flowering and abundance of Delphinium nuttallianum (Ranunculaceae) in response to a subalpine climate warming experiment. Global Change Biology 9: 885894.
  • Saure MC. 1985. Dormancy release in deciduous fruit trees. Horticultural Reviews 7: 239300.
  • Shabbar A, Bonsal B. 2003. An assessment of changes in winter cold and warm spells over Canada. Natural Hazards 29: 173188.
  • Sherry RA, Zhou X, Gu S, Arnone JA III, Schimel DS, Verburg PS, Wallace LL, Luo Y. 2007. Divergence of reproductive phenology under climate warming. Proceedings of the National Academy of Sciences, USA 104: 198202.
  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Avery KB, Tignor M, Miller HL. 2007. Climate change 2007: the physical science basis: contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. New York, NY, USA: Cambridge University Press.
  • Statsoft Inc. 2001. Statistica 6.0. Tulsa, OK, USA: Statsoft Inc.
  • Sun S, Frelich LE. 2011. Flowering phenology and height growth pattern are associated with maximum plant height, relative growth rate, and stem tissue mass density in herbaceous grassland species. Journal of Ecology 99: 9911000.
  • Totland Ø, Alatalo JM. 2002. Effects of temperature and date of snowmelt on growth, reproduction, and flowering phenology in the arctic/alpine herb, Ranunculus glacialis. Oecologia 133: 168175.
  • Tromp J. 1984. Floral-bud formation in apple as affected by air and root temperature, air humidity, light intensity, and day length. Acta Horticulturae 149: 3947.
  • Vile D, Shipley B, Garnier E. 2006. A structural equation model to integrate changes in functional strategies during old-field succession. Ecology 87: 504517.
  • Walch K, van Hasslet PR. 1991. The influence of low temperature on the membrane lipid composition and flowering capacity of tulip bulbs. Acta Horticulturae 298: 345353.
  • Warner RM, Erwin JE. 2006. Prolonged high-temperature exposure differentially reduces growth and flowering of 12 Viola × wittrockiana Gams. cvs. Scientia Horticulturae 108: 295302.
  • Webb CO, Ackerly DD, Kembel SW. 2008. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24: 20982100.
  • Wu X, Duffy JE, Reich PB, Sun S. 2011. A brown-world cascade in the dung decomposer food web of an alpine meadow: Effects of predator interactions and warming. Ecological Monographs 81: 313328.
  • Yu H, Luedeling E, Xu J. 2010. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences, USA 107: 2215122156.
  • Zhao Z, Gao X, Tang M, Xu Y. 2002. Prediction for the climate change. In: Ding Y, ed. Projection for the future environment in western China. Beijing, China: Science Press, 1746 (In Chinese).