SEARCH

SEARCH BY CITATION

References

  • Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, Zhu JK. 2006. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. Journal of Biological Chemistry 281: 3763637645.
  • Allen DJ, Ort DR. 2001. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends in Plant Science 6: 3642.
  • Bäckström S, Elfving N, Nilsson R, Wingsle G, Björklund S. 2007. Purification of a plant mediator from Arabidopsis thaliana identifies PFT1 as the Med25 subunit. Molecular Cell 26: 717729.
  • Badawi M, Danyluk J, Boucho B, Houde M, Sarhan F. 2007. The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs. Molecular Genetics and Genomics 277: 533554.
  • Baker SS, Wilhelm KS, Thomashow MF. 1994. The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Molecular Biology 24: 701713.
  • Bali R, Savino L, Ramirez DA, Tsvetkova NM, Bagatolli L, Tablin F, Crowe JH, Leidy C. 2009. Macroscopic domain formation during cooling in the platelet plasma membrane: an issue of low cholesterol content. Biochimica et Biophysica Acta 1788: 12291237.
  • Batistic O, Waadt R, Steinhorst L, Held K, Kudla J. 2010. CBL-mediated targeting of CIPKs facilitates the decoding of calcium signals emanating from distinct cellular stores. Plant Journal 61: 211222.
  • Berberich T, Harada M, Sugawara K, Kodama H, Iba K, Kusano T. 1998. Two maize genes encoding omega-3 fatty acid desaturase and their differential expression to temperature. Plant Molecular Biology 36: 297306.
  • Bieniawska Z, Espinoza C, Schlereth A, Sulpice R, Hincha DK, Hannah MA. 2008. Disruption of the Arabidopsis circadian clock is responsible for extensive variation in the cold-responsive transcriptome. Plant Physiology 147: 263279.
  • Boyce JM, Knight H, Deyholos M, Openshaw MR, Galbraith DW, Warren G, Knight MR. 2003. The sfr6 mutant of Arabidopsis is defective in transcriptional activation via CBF/DREB1 and DREB2 and shows sensitivity to osmotic stress. Plant Journal 34: 395406.
  • Carpaneto A, Ivashikina N, Levchenko V, Krol E, Jeworutzki E, Zhu JK, Hedrich R. 2007. Cold transiently activates calcium-permeable channels in Arabidopsis mesophyll cells. Plant Physiology 143: 487494.
  • Carvallo MA, Pino MT, Jeknic Z, Zou C, Doherty CJ, Shiu SH, Chen TH, Thomashow MF. 2011. A comparison of the low temperature transcriptomes and CBF regulons of three plant species that differ in freezing tolerance: Solanum commersonii, Solanum tuberosum, and Arabidopsis thaliana. Journal of Experimental Botany 62: 38073819.
  • Catalá R, Santos E, Alonso JM, Ecker JR, Martínez-Zapater JM, Salinas J. 2003. Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. The Plant Cell 15: 29402951.
  • Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA et al. 2002. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. The Plant Cell 14: 559574.
  • Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK. 2003. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes & Development 17: 10431054.
  • Choi HI, Park HJ, Park JH, Kim S, Im MY, Seo HH, Kim YW, Hwang I, Kim SY. 2005. Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiology 139: 17501761.
  • Conaway RC, Conaway JW. 2011. Origins and activity of the Mediator complex. Seminars in Cell & Developmental Biology 22: 729734.
  • Cook D, Fowler S, Fiehn O, Thomashow MF. 2004. A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proceedings of the National Academy of Sciences, USA 101: 1524315248.
  • Covington MF, Maloof JN, Straume M, Kay SA, Harmer SL. 2008. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biology 9: R130.
  • De Koninck P, Schulman H. 1998. Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 279: 227230.
  • Ding JP, Pickard BG. 1993. Modulation of mechanosensitive calcium-selective cation channels by temperature. Plant Journal 3: 713720.
  • Dodd AN, Jakobsen MK, Baker AJ, Telzerow A, Hou SW, Laplaze L, Barrot L, Poethig RS, Haseloff J, Webb AA. 2006. Time of day modulates low-temperature Ca signals in Arabidopsis. Plant Journal 48: 962973.
  • Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF. 2009. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. The Plant Cell 21: 972984.
  • Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK. 2006. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proceedings of the National Academy of Sciences, USA 103: 82818286.
  • Dong MA, Farre EM, Thomashow MF. 2011. Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis. Proceedings of the National Academy of Sciences, USA 108: 72417246.
  • Dutilleul C, Benhassaine-Kesri G, Demandre C, Reze N, Launay A, Pelletier S, Renou JP, Zachowski A, Baudouin E, Guillas I. 2012. Phytosphingosine-phosphate is a signal for AtMPK6 activation and Arabidopsis response to chilling. New Phytologist 194: 181191.
  • El Kayal W, Navarro M, Marque G, Keller G, Marque C, Teulieres C. 2006. Expression profile of CBF-like transcriptional factor genes from Eucalyptus in response to cold. Journal of Experimental Botany 57: 24552469.
  • Fowler SG, Cook D, Thomashow MF. 2005. Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiology 137: 961968.
  • Fowler S, Thomashow MF. 2002. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. The Plant Cell 14: 16751690.
  • Franklin KA, Whitelam GC. 2007. Light-quality regulation of freezing tolerance in Arabidopsis thaliana. Nature Genetics 39: 14101413.
  • Gibson S, Arondel V, Iba K, Somerville C. 1994. Cloning of a temperature-regulated gene encoding a chloroplast omega-3 desaturase from Arabidopsis thaliana. Plant Physiology 106: 16151621.
  • Gilmour SJ, Fowler SG, Thomashow MF. 2004. Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Molecular Biology 54: 767781.
  • Gilmour SJ, Hajela RK, Thomashow MF. 1988. Cold acclimation of Arabidopsis thaliana. Plant Physiology 87: 745750.
  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF. 2000. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiology 124: 18541865.
  • Gilmour SJ, Thomashow MF. 1991. Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana. Plant Molecular Biology 17: 12331240.
  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF. 1998. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant Journal 16: 433443.
  • Gulick PJ, Drouin S, Yu Z, Danyluk J, Poisson G, Monroy AF, Sarhan F. 2005. Transcriptome comparison of winter and spring wheat responding to low temperature. Genome 48: 913923.
  • Guy CL, Haskell D. 1987. Induction of freezing tolerance in spinach is associated with the synthesis of cold acclimation induced proteins. Plant Physiology 84: 872878.
  • Guy C, Kaplan F, Kopka J, Selbig J, Hincha DK. 2008. Metabolomics of temperature stress. Physiologia Plantarum 132: 220235.
  • Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ. 2002. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiology 130: 639648.
  • Han SC, Tang RH, Anderson LK, Woerner TE, Pei ZM. 2003. A cell surface receptor mediates extracellular Ca2+ sensing in guard cells. Nature 425: 196200.
  • Hannah MA, Heyer AG, Hincha DK. 2005. A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genetics 1: e26.
  • Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA. 2000. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290: 21102113.
  • Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT. 2002. Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiology 129: 10861094.
  • Ishitani M, Xiong L, Lee H, Stevenson B, Zhu JK. 1998. HOS1, a genetic locus involved in cold-responsive gene expression in Arabidopsis. The Plant Cell 10: 11511161.
  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. 2006. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant and Cell Physiology 47: 141153.
  • Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Deits T, Thomashow MF. 2001. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiology 127: 910917.
  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF. 1998. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280: 104106.
  • James AB, Syed NH, Bordage S, Marshall J, Nimmo GA, Jenkins GI, Herzyk P, Brown JW, Nimmo HG. 2012. Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes. The Plant Cell 24: 961981.
  • Jeon J, Kim J. 2011. FVE, an Arabidopsis homologue of the retinoblastoma-associated protein that regulates flowering time and cold response, binds to chromatin as a large multiprotein complex. Molecules and Cells 32: 227234.
  • Jin JB, Jin YH, Lee J, Miura K, Yoo CY, Kim WY, Van Oosten M, Hyun Y, Somers DE, Lee I et al. 2008. The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through effects on FLC chromatin structure. Plant Journal 53: 530540.
  • Karashima Y, Talavera K, Everaerts W, Janssens A, Kwan KY, Vennekens R, Nilius B, Voets T. 2009. TRPA1 acts as a cold sensor in vitro and in vivo. Proceedings of the National Academy of Sciences, USA 106: 12731278.
  • Kendall SL, Hellwege A, Marriot P, Whalley C, Graham IA, Penfield S. 2011. Induction of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and CBF transcription factors. The Plant Cell 23: 25682580.
  • Kidokoro S, Maruyama K, Nakashima K, Imura Y, Narusaka Y, Shinwari ZK, Osakabe Y, Fujita Y, Mizoi J, Shinozaki K et al. 2009. The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis. Plant Physiology 151: 20462057.
  • Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg-Bauer E, Kudla J, Harter K. 2007. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant Journal 50: 347363.
  • Kim HJ, Hyun Y, Park JY, Park MJ, Park MK, Kim MD, Lee MH, Moon J, Lee I, Kim J. 2004. A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana. Nature Genetics 36: 167171.
  • Kim HJ, Kim YK, Park JY, Kim J. 2002. Light signalling mediated by phytochrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana. Plant Journal 29: 693704.
  • Kim KN, Cheong YH, Grant JJ, Pandey GK, Luan S. 2003. CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. The Plant Cell 15: 411423.
  • Knight H, Brandt S, Knight MR. 1998. A history of stress alters drought calcium signalling pathways in Arabidopsis. Plant Journal 16: 681687.
  • Knight H, Knight MR. 2000. Imaging spatial and cellular characteristics of low temperature calcium signature after cold acclimation in Arabidopsis. Journal of Experimental Botany 51: 16791686.
  • Knight H, Mugford SG, Ulker B, Gao D, Thorlby G, Knight MR. 2009. Identification of SFR6, a key component in cold acclimation acting post-translationally on CBF function. Plant Journal 58: 97108.
  • Knight H, Trewavas AJ, Knight MR. 1996. Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. The Plant Cell 8: 489503.
  • Knight H, Veale E, Warren GJ, Knight MR. 1999. The sfr6 mutation in Arabidopsis suppresses low-temperature induction of genes dependent on the CRT/DRE sequence motif. The Plant Cell 11: 875886.
  • Knight H, Zarka DG, Okamoto H, Thomashow MF, Knight MR. 2004. Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element. Plant Physiology 135: 17101717.
  • Knight MR, Campbell AK, Smith SM, Trewavas AJ. 1991. Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352: 524526.
  • Kornberg RD. 2005. Mediator and the mechanism of transcriptional activation. Trends in Biochemical Sciences 30: 235239.
  • Kreps J, Budworth P, Goff S, Wang R. 2003. Identification of putative plant cold responsive regulatory elements by gene expression profiling and a pattern enumeration algorithm. Plant Biotechnology Journal 1: 345352.
  • Kumar SV, Lucyshyn D, Jaeger KE, Alos E, Alvey E, Harberd NP, Wigge PA. 2012. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature 484: 242245.
  • Kumar SV, Wigge PA. 2010. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140: 136147.
  • Lång V, Mäntylä E, Welin B, Sundberg B, Palva ET. 1994. Alterations in water status, endogenous abscisic acid content, and expression of rab18 gene during the development of freezing tolerance in Arabidopsis thaliana. Plant Physiology 104: 13411349.
  • Larkindale J, Knight MR. 2002. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiology 128: 682695.
  • Lazaro A, Valverde F, Pineiro M, Jarillo JA. 2012. The Arabidopsis E3 ubiquitin ligase HOS1 negatively regulates CONSTANS abundance in the photoperiodic control of flowering. The Plant Cell 24: 982999.
  • Levitt J. 1980. Responses of plants to environmental stress. Chilling, freezing, and high temperature stresses. New York, NY, USA: Academic Press.
  • Lewis BD, Karlin-Neumann G, Davis RW, Spalding EP. 1997. Ca2+-activated anion channels and membrane depolarizations induced by blue light and cold in Arabidopsis seedlings. Plant Physiology 114: 13271334.
  • Li Y, Bjorklund S, Jiang YW, Kim YJ, Lane WS, Stillman DJ, Kornberg RD. 1995. Yeast global transcriptional regulators Sin4 and Rgr1 are components of mediator complex/RNA polymerase II holoenzyme. Proceedings of the National Academy of Sciences, USA 92: 1086410868.
  • Liu HH, Tian X, Li YJ, Wu CA, Zheng CC. 2008. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14: 836843.
  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki Y, Shinozaki K. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. The Plant Cell 10: 13911406.
  • Los DA, Murata N. 2000. Regulation of enzymatic activity and gene expression by membrane fluidity. Science’s STKE 2000: pe1.
  • Ludwig AA, Romeis T, Jones JDG. 2004. CDPK-mediated signalling pathways: specificity and cross-talk. Journal of Experimental Botany 55: 181188.
  • Lv DK, Bai X, Li Y, Ding XD, Ge Y, Cai H, Ji W, Wu N, Zhu YM. 2010. Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene 459: 3947.
  • Mantyla E, Lang V, Palva ET. 1995. Role of abscisic acid in drought-induced freezing tolerance, cold acclimation, and accumulation of LT178 and RAB18 proteins in Arabidopsis thaliana. Plant Physiology 107: 141148.
  • Marquez Y, Brown JW, Simpson C, Barta A, Kalyna M. 2012. Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Research 22: 11841195.
  • Martinière A, Shvedunova M, Thomson AJ, Evans NH, Penfield S, Runions J, McWatters HG. 2011. Homeostasis of plasma membrane viscosity in fluctuating temperatures. New Phytologist 192: 328337.
  • Matteucci M, D’Angeli S, Errico S, Lamanna R, Perrotta G, Altamura MM. 2011. Cold affects the transcription of fatty acid desaturases and oil quality in the fruit of Olea europaea L. genotypes with different cold hardiness. Journal of Experimental Botany 62: 34033420.
  • Mazars C, Thion L, Thuleau P, Graziana A, Knight MR, Moreau M, Ranjeva R. 1997. Organization of cytoskeleton controls the changes in cytosolic calcium of cold-shocked Nicotiana plumbaginifolia protoplasts. Cell Calcium 22: 413420.
  • Medina J, Bargues M, Terol J, Perez-Alonso M, Salinas J. 1999. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiology 119: 463470.
  • Mehlmer N, Wurzinger B, Stael S, Hofmann-Rodrigues D, Csaszar E, Pfister B, Bayer R, Teige M. 2010. The Ca2+-dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in Arabidopsis. Plant Journal 63: 484498.
  • Meza-Basso L, Alberdi M, Raynal M, Ferrero-Cadinanos ML, Delseny M. 1986. Changes in protein synthesis in rapeseed (Brassica napus) seedlings during a low temperature treatment. Plant Physiology 82: 733738.
  • Mikami K, Kanesaki Y, Suzuki I, Murata N. 2002. The histidine kinase Hik33 perceives osmotic stress and cold stress in Synechocystis sp PCC 6803. Molecular Microbiology 46: 905915.
  • Mikkelsen MD, Thomashow MF. 2009. A role for circadian evening elements in cold-regulated gene expression in Arabidopsis. Plant Journal 60: 328339.
  • Minorsky PV, Spanswick RM. 1989. Electrophysiological evidence for a role for calcium in temperature sensing by roots of cucumber seedlings. Plant, Cell and Environment 12: 137143.
  • Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan RA, Yun DJ, Hasegawa PM. 2007. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. The Plant Cell 19: 14031414.
  • Mohapatra SS, Poole RJ, Dhindsa RS. 1987. Changes in protein patterns and translatable messenger RNA populations during cold acclimation of alfalfa. Plant Physiology 84: 11721176.
  • Monroy AF, Sangwan V, Dhindsa RS. 1998. Low temperature signal transduction during cold acclimation: protein phosphatase 2A as an early target for cold-inactivation. Plant Journal 13: 653660.
  • Monroy AF, Sarhan F, Dhindsa RS. 1993. Cold-induced changes in freezing tolerance, protein phosphorylation, and gene expression (evidence for a role of calcium). Plant Physiology 102: 12271235.
  • Murata N, Los DA. 1997. Membrane fluidity and temperature perception. Plant Physiology 115: 875879.
  • Narsai R, Castleden I, Whelan J. 2010. Common and distinct organ and stress responsive transcriptomic patterns in Oryza sativa and Arabidopsis thaliana. BMC Plant Biology 10: 262.
  • Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K. 2003. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis RD29A gene in response to dehydration and high-salinity stresses. Plant Journal 34: 137148.
  • Nilsson-Leissner G. 1929. Death from low temperature and resistance of plants to cold. Quarterly Review of Biology 4: 113117.
  • Nishida I, Murata N. 1996. Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annual Review of Plant Physiology and Plant Molecular Biology 47: 541568.
  • Novillo F, Alonso JM, Ecker JR, Salinas J. 2004. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proceedings of the National Academy of Sciences, USA 101: 39853990.
  • Novillo F, Medina J, Salinas J. 2007. Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proceedings of the National Academy of Sciences, USA 104: 2100221007.
  • Orvar BL, Sangwan V, Omann F, Dhindsa RS. 2000. Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant Journal 23: 785794.
  • Palusa SG, Ali GS, Reddy AS. 2007. Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins: regulation by hormones and stresses. Plant Journal 49: 10911107.
  • Park HC, Kim H, Koo SC, Park HJ, Cheong MS, Hong H, Baek D, Chung WS, Kim DH, Bressan RA et al. 2010. Functional characterization of the SIZ/PIAS-type SUMO E3 ligases, OsSIZ1 and OsSIZ2 in rice. Plant, Cell and Environment 33: 19231934.
  • Park HJ, Park HC, Lee SY, Bohnert HJ, Yun DJ. 2011. Ubiquitin and ubiquitin-like modifiers in plants. Journal of Plant Biology 54: 275285.
  • Pavangadkar K, Thomashow MF, Triezenberg SJ. 2010. Histone dynamics and roles of histone acetyltransferases during cold-induced gene regulation in Arabidopsis. Plant Molecular Biology 74: 183200.
  • Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S et al. 2002. A TRP channel that senses cold stimuli and menthol. Cell 108: 705715.
  • Pennycooke JC, Cheng H, Roberts SM, Yang Q, Rhee SY, Stockinger EJ. 2008. The low temperature-responsive, Solanum CBF1 genes maintain high identity in their upstream regions in a genomic environment undergoing gene duplications, deletions, and rearrangements. Plant Molecular Biology 67: 483497.
  • Plieth C. 1999. Temperature sensing by plants: calcium-permeable channels as primary sensors – a model. Journal of Membrane Biology 172: 121127.
  • Plieth C, Hansen UP, Knight H, Knight MR. 1999. Temperature sensing by plants: the primary characteristics of signal perception and calcium response. Plant Journal 18: 491497.
  • Pokorná J, Schwarzerová K, Zelenková S, Petrášek J, Janotová I, Apková V, Opatrny Z. 2004. Sites of actin filament initiation and reorganization in cold-treated tobacco cells. Plant, Cell & Environment 27: 641653.
  • Polisensky DH, Braam J. 1996. Cold-shock regulation of the Arabidopsis TCH genes and the effects of modulating intracellular calcium levels. Plant Physiology 111: 12711279.
  • Prasad TK, Anderson MD, Martin BA, Stewart CR. 1994. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. The Plant Cell 6: 6574.
  • Provart NJ, Gil P, Chen W, Han B, Chang HS, Wang X, Zhu T. 2003. Gene expression phenotypes of Arabidopsis associated with sensitivity to low temperatures. Plant Physiology 132: 893906.
  • Qin F, Sakuma Y, Li J, Liu Q, Li YQ, Shinozaki K, Yamaguchi-Shinozaki K. 2004. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant and Cell Physiology 45: 10421052.
  • Ranf S, Grimmer J, Poschl Y, Pecher P, Chinchilla D, Scheel D, Lee J. 2012. Defense-related calcium signaling mutants uncovered via a quantitative high-throughput screen in Arabidopsis thaliana. Molecular Plant 5: 115130.
  • Robinson SJ, Parkin IA. 2008. Differential SAGE analysis in Arabidopsis uncovers increased transcriptome complexity in response to low temperature. BMC Genomics 9: 434.
  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K. 2000. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant Journal 23: 319327.
  • Sakai A, Larcher W. 1987. Frost survival of plants. Responses and adaptation to freezing stress. Ecological Studies 62: 321.
  • Sangwan V, Foulds I, Singh J, Dhindsa RS. 2001. Cold activation of Brassica napus BN115 promter is mediated by structural changes in membranes and cytoskeleton and requires Ca2+ influx. Plant Journal 27: 112.
  • Sasaki K, Kim MH, Imai R. 2007. Arabidopsis COLD SHOCK DOMAIN PROTEIN2 is a RNA chaperone that is regulated by cold and developmental signals. Biochemical and Biophysical Research Communications 364: 633638.
  • Scrase-Field SA, Knight MR. 2003. Calcium: just a chemical switch? Current Opinion in Plant Biology 6: 500506.
  • Shan DP, Huang JG, Yang YT, Guo YH, Wu CA, Yang GD, Gao Z, Zheng CC. 2007. Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytologist 176: 7081.
  • Sheen J. 1996. Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274: 19001902.
  • Shinozaki K, Yamaguchi-Shinozaki K. 1996. Molecular responses to drought and cold stress. Current Opinion in Biotechnology 7: 161167.
  • Shinwari ZK, Nakashima K, Miura S, Kasuga M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K. 1998. An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochemical and Biophysical Research Communications 250: 161170.
  • Stitt M, Hurry V. 2002. A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Current Opinion in Plant Biology 5: 199206.
  • Stockinger EJ, Gilmour SJ, Thomashow MF. 1997. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proceedings of the National Academy of Sciences, USA 94: 10351040.
  • Strahl BD, Allis CD. 2000. The language of covalent histone modifications. Nature 403: 4145.
  • Strand A, Hurry V, Gustafsson P, Gardestrom P. 1997. Development of Arabidopsis thaliana leaves at low temperatures releases the suppression of photosynthesis and photosynthetic gene expression despite the accumulation of soluble carbohydrates. Plant Journal 12: 605614.
  • Struhl K. 1998. Histone acetylation and transcriptional regulatory mechanisms. Genes & Development 12: 599606.
  • Sung S, Amasino RM. 2005. Remembering winter: toward a molecular understanding of vernalization. Annual Review of Plant Biology 56: 491508.
  • Sunkar R, Li YF, Jagadeeswaran G. 2012. Functions of microRNAs in plant stress responses. Trends in Plant Science 17: 196203.
  • Sunkar R, Zhu JK. 2004. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. The Plant Cell 16: 20012019.
  • Suzuki M, Ketterling MG, McCarty DR. 2005. Quantitative statistical analysis of cis-regulatory sequences in ABA/VP1- and CBF/DREB1-regulated genes of Arabidopsis. Plant Physiology 139: 437447.
  • Tähtiharju S, Sangwan V, Monroy AF, Dhindsa RS, Borg M. 1997. The induction of KIN genes in cold-acclimating Arabidopsis thaliana. Evidence of a role for calcium. Planta 203: 442447.
  • Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H. 2004. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Molecular Cell 15: 141152.
  • Thomashow MF. 1994. Arabidopsis thaliana as a model for studying mechanisms of plant cold tolerance. In: Meyerowitz EM, Somerville CR, eds. Arabidopsis. New York, NY, USA: Cold Spring Harbor Laboratory Press, 807834.
  • Thomashow MF. 1999. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Physiology 50: 571599.
  • Townley HE, Knight MR. 2002. Calmodulin as a potential negative regulator of Arabidopsis COR gene expression. Plant Physiology 128: 11691172.
  • Uemura M, Steponkus PL. 1989. Effect of cold acclimation on the incidence of two forms of freezing injury in protoplasts isolated from rye leaves. Plant Physiology 91: 11311137.
  • Vlachonasios KE, Thomashow MF, Triezenberg SJ. 2003. Disruption mutations of ADA2b and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development, and gene expression. The Plant Cell 15: 626638.
  • Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF. 2005. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant Journal 41: 195211.
  • Warren G, McKown R, Marin A, Teutonico R. 1996. Isolation of mutations affecting the development of freezing tolerance in Arabidopsis thaliana (L.) Heynh. Plant Physiology 111: 10111019.
  • Wathugala DL, Richards SA, Knight H, Knight MR. 2011. OsSFR6 is a functional rice orthologue of SENSITIVE TO FREEZING-6 and can act as a regulator of COR gene expression, osmotic stress and freezing tolerance in Arabidopsis. New Phytologist 191: 984995.
  • Webb MS, Uemura M, Steponkus PL. 1994. A comparison of freezing injury in oat and rye: two cereals at the extremes of freezing tolerance. Plant Physiology 104: 467478.
  • Weiser CJ. 1970. Cold resistance and injury in woody plants: knowledge of hardy plant adaptations to freezing stress may help us to reduce winter damage. Science 169: 12691278.
  • Whalley HJ, Sargeant AW, Steele JF, Lacoere T, Lamb R, Saunders NJ, Knight H, Knight MR. 2011. Transcriptomic analysis reveals calcium regulation of specific promoter motifs in Arabidopsis. The Plant Cell 23: 40794095.
  • White PJ. 2009. Depolarization-activated calcium channels shape the calcium signatures induced by low-temperature stress. New Phytologist 183: 68.
  • Winfield MO, Lu C, Wilson ID, Coghill JA, Edwards KJ. 2009. Cold- and light-induced changes in the transcriptome of wheat leading to phase transition from vegetative to reproductive growth. BMC Plant Biology 9: 55.
  • Winfield MO, Lu C, Wilson ID, Coghill JA, Edwards KJ. 2010. Plant responses to cold: transcriptome analysis of wheat. Plant Biotechnology Journal 8: 749771.
  • Wurzinger B, Mair A, Pfister B, Teige M. 2011. Cross-talk of calcium-dependent protein kinase and MAP kinase signaling. Plant Signal & Behavior 6: 812.
  • Xi J, Qiu YJ, Du LQ, Poovaiah BW. 2012. Plant-specific trihelix transcription factor AtGT2L interacts with calcium/calmodulin and responds to cold and salt stresses. Plant Science 185: 274280.
  • Yamaguchi-Shinozaki K, Shinozaki K. 1994. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. The Plant Cell 6: 251264.
  • Yoshida S, Uemura M. 1984. Protein and lipid compositions of isolated plasma membranes from orchard grass (Dactylis glomerata L.) and changes during cold acclimation. Plant Physiology 75: 3137.
  • Zarka DG, Vogel JT, Cook D, Thomashow MF. 2003. Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiology 133: 910918.
  • Zhang C, Guy CL. 2006. In vitro evidence of Hsc70 functioning as a molecular chaperone during cold stress. Plant Physiology and Biochemistry 44: 844850.
  • Zhang J, Xu Y, Huan Q, Chong K. 2009. Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics 10: 449.
  • Zhang X, Fowler SG, Cheng H, Lou Y, Rhee SY, Stockinger EJ, Thomashow MF. 2004. Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant Journal 39: 905919.
  • Zhu J, Jeong JC, Zhu Y, Sokolchik I, Miyazaki S, Zhu JK, Hasegawa PM, Bohnert HJ, Shi H, Yun DJ et al. 2008. Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proceedings of the National Academy of Sciences, USA 105: 49454950.