SEARCH

SEARCH BY CITATION

References

  • Albert VA, Gustafsson MHG, Di Laurenzio L. 1998. Ontogenetic systematics, molecular developmental genetics, and the angiosperm petal. In: Soltis DE, Soltis PS, Doyle JJ, eds. Molecular systematics of plants II. Norwell, MA, USA: Kluwer.
  • Baum DA, Donoghue MJ. 2002. Transference of function, heterotopy and the evolution of plant development. In: Cronk QCB, Bateman RM, Hawkins JA, eds. Developmental genetics and plant evolution. London, UK: Taylor & Francis, 5269.
  • Bowman JL. 1997. Evolutionary conservation of angiosperm flower development at the molecular and genetic levels. Journal of Biosciences 22: 515527.
  • Brockington SF, Rudall PJ, Frohlich MW, Oppenheimer DG, Soltis PS, Soltis DE. 2012. “Living stones” reveal alternative petal identity programs within the core eudicots. Plant Journal 69: 193203.
  • Chang S, Puryear J, Cairney J. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter 11: 113116.
  • Coen ES, Meyerowitz EM. 1991. The war of the whorls – genetic interactions controlling flower development. Nature 353: 3137.
  • De Martino G, Pan I, Emmanuel E, Levy A, Irish VF. 2006. Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development. Plant Cell 18: 18331845.
  • Drea S, Hileman LC, De Martino G, Irish VF. 2007. Functional analyses of genetic pathways controlling petal specification in poppy. Development 134: 41574166.
  • Endress PK. 1994. Floral structure and evolution of primitive angiosperms – recent advances. Plant Systematics and Evolution. 192: 7997.
  • Feng CM, Qu R, Zhou LL, Xie DY, Xiang QY(J). 2009. Shoot regeneration of dwarf dogwood (Cornus canadensis L.) and morphological characterization of the regenerated plants. Plant Cell, Tissue and Organ Culture 97: 2737.
  • Feng CM, Xiang QY(J), Franks RG. 2011. Phylogeny-based developmental analyses illuminate evolution of inflorescence architectures in dogwoods (Cornus s. l., Cornaceae). New Phytologist 191: 850869.
  • Franks RG, Wang CX, Levin JZ, Liu ZC. 2002. SEUSS, a member of a novel family of plant regulatory proteins, represses floral homeotic gene expression with LEUNIG. Development 129: 253263.
  • Gorokhova E. 2005. Effects of preservation and storage of microcrustaceans in RNAlater on RNA and DNA degradation. Limnology and Oceanography-Methods 3: 143148.
  • Harlow LD, Koutoulis A, Hallegraeff GM. 2006. A novel, simplified technique for preservation and rapid isolation of total RNA from the toxic dinoflagellate Alexandrium catenella (Dinophyceae). Phycologia 45: 311318.
  • Honma T, Goto K. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525529.
  • Irish VF. 2009. Evolution of petal identity. Journal of Experimental Botany. 60: 25172527.
  • Jaramillo MA, Kramer EM. 2004. APETALA3 and PISTILLATA homologs exhibit novel expression patterns in the unique perianth of Aristolochia (Aristolochiaceae). Evolution and Development 6: 449458.
  • Kanno A, Saeki H, Kameya T, Saedler H, Theissen G. 2003. Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana). Plant Molecular Biology 52: 831841.
  • Kellogg EA. 2004. Evolution of developmental traits. Current Opinion in Plant Biology. 7: 9298.
  • Kim S, Koh J, Ma H, Hu Y, Endress PK, Hauser BA, Buzgo M, Soltis PS, Soltis DE. 2005. Sequence and expression studies of A-, B-, and E-class MADS-box homologues in Eupomatia (eupomatiaceae): support for the bracteate origin of the calyptra. International Journal of Plant Sciences 166: 185198.
  • Kramer EM, Di Stilio VS, Schluter PM. 2003. Complex patterns of gene duplication in the APETALA3 and PISTILLATA lineages of the Ranunculaceae. International Journal of Plant Sciences 164: 111.
  • Kramer EM, Hodges SA. 2010. Aquilegia as a model system for the evolution and ecology of petals. Philosophical Transactions of the Royal Society of London B 365: 477490.
  • Landis JB, Barnett LL, Hileman LC. 2012. Evolution of petaloid sepals independent of shifts in B-class MADS box gene expression. Development Genes and Evolution 222: 1928.
  • Litt A, Kramer EM. 2010. The ABC model and the diversification of floral organ identity. Seminars in Cell & Developmental Biology 21: 129137.
  • Maddison WP, Maddison DR. 2007. Mesquite: a modular system for evolutionary analysis, version 2.74. [WWW document] URL http://mesquiteproject.org [accessed 3 October 2010]
  • Maturen NM. 2008. Genetic analysis of the evolution of petaloid bracts in dogwoods. PhD Dissertation, University of Michigan Ann Arbor, MI, USA.
  • Mondragon-Palomino M, Theissen G. 2008. MADS about the evolution of orchid flowers. Trends in Plant Science 13: 5159.
  • Mondragon-Palomino M, Theissen G. 2009. Why are orchid flowers so diverse? reduction of evolutionary constraints by paralogues of class B floral homeotic genes. Annals of Botany 104: 583594.
  • Munster T, Wingen LU, Faigl W, Werth S, Saedler H, Theissen G. 2001. Characterization of three GLOBOSA-like MADS-box genes from maize: evidence for ancient paralogy in one class of floral homeotic B-function genes of grasses. Gene 262: 113.
  • Mutter GL, Zahrieh D, Liu CM, Neuberg D, Finkelstein D, Baker HE, Warrington JA. 2004. Comparison of frozen and RNALater solid tissue storage methods for use in RNA expression microarrays. BMC Genomics 5: 88.
  • Park JH, Ishikawa Y, Ochiai T, Kanno A, Kameya T. 2004. Two GLOBOSA-like genes are expressed in second and third whorls of homochlamydeous flowers in Asparagus officinalis L. Plant and Cell Physiology 45: 325332.
  • Park JH, Ishikawa Y, Yoshida R, Kanno A, Kameya T. 2003. Expression of AODEF, a B-functional MADS-box gene, in stamens and inner tepals of the dioecious species Asparagus officinalis L. Plant Molecular Biology 51: 867875.
  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200203.
  • Rijpkema AS, Vandenbussche M, Koes R, Heijmans K, Gerats T. 2010. Variations on a theme: changes in the floral ABCs in angiosperms. Seminars in Cell & Developmental Biology 21: 100107.
  • Sablowski R. 2010. Genes and functions controlled by floral organ identity genes. Seminars in Cell & Developmental Biology 21: 9499.
  • Sambrook J, Russell DW. 2006. Dot and slot hybridization of purified RNA. CSH Protocols. 2006: 1.
  • Souer E, Rebocho AB, Bliek M, Kusters E, de Bruin RAM, Koes R. 2008. Patterning of inflorescences and flowers by the F-Box protein DOUBLE TOP and the LEAFY homolog ABERRANT LEAF AND FLOWER of Petunia. Plant Cell 20: 20332048.
  • Stellari GM, Jaramillo MA, Kramer EM. 2004. Evolution of the APETALA3 and PISTILLATA lineages of MADS-box-containing genes in the basal angiosperms. Molecular Biology and Evolution 21: 506519.
  • Theissen G, Kim JT, Saedler H. 1996. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. Journal of Molecular Evolution 43: 484516.
  • Theissen G, Saedler H. 2001. Plant biology – floral quartets. Nature 409: 469471.
  • Tsai WC, Kuoh CS, Chuang MH, Chen HH. 2004. Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant and Cell Physiology. 45: 831844.
  • van Tunen AJ, Eikelboom W, Angenent GC. 1993. Floral organogenesis in Tulipa. Flowering Newsletter 16: 3338.
  • Vandenbussche M, Zethof J, Royaert S, Weterings K, Gerats T. 2004. The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development. Plant Cell 16: 741754.
  • Vekemans D, Viaene T, Caris P, Geuten K. 2011. Transference of function shapes floral organ identity in the dove tree inflorescence. New Phytologist 193: 216228.
  • Weberling F. 1989. Morphology of flowers and inflorescences. Translated by Pankhurst RJ. Cambridge, UK: Cambridge University Press.
  • Xiang QY, Brunsfeld SJ, Soltis DE, Soltis PS. 1996. Phylogenetic relationships in Cornus based on chloroplast DNA restriction sites: implications for biogeography and character evolution. Systematic Botany 21: 515534.
  • Xiang QY, Soltis DE, Soltis PS. 1998. Phylogenetic relationships of Cornaceae and close relatives inferred from matK and rbcL sequences. American Journal of Botany 85: 285297.
  • Xiang QY, Thomas DT. 2008. Tracking character evolution and biogeographic history through time in cornaceae – does choice of methods matter? Journal of Systematics and Evolution 46: 349374.
  • Xiang QY, Thomas DT, Xiang QP. 2011. Resolving and dating the phylogeny of Cornales – effects of taxon sampling, data partitions, and fossil calibrations. Molecular Phylogenetics and Evolution 59: 123138.
  • Xiang QY, Thorne JL, Seo TK, Zhang W, Thomas DT, Ricklefs RE. 2008. Rates of nucleotide substitution in Cornaceae (Cornales)-Pattern of variation and underlying causal factors. Molecular Phylogenetics and Evolution 49: 327342.
  • Xiang QYJ, Thomas DT, Zhang WH, Manchester SR, Murrell Z. 2006. Species level phylogeny of the genus Cornus (Cornaceae) based on molecular and morphological evidence – implications for taxonomy and Tertiary intercontinental migration. Taxon 55: 930.
  • Zhang W, Xiang QY, Thomas DT, Wiegmann BM, Frohlich MW, Soltis DE. 2008. Molecular evolution of PISTILLATA-like genes in the dogwood genus Cornus (Cornaceae). Molecular Phylogenetics and Evolution 47: 175195.