SEARCH

SEARCH BY CITATION

References

  • Bartlein PJ, Anderson KH, Anderson PM, Edwards ME, Mock CJ, Thompson RS, Webb RS, Whitlock C. 1998. Paleoclimate simulations for North America over the past 21,000 years: features of the simulated climate and comparisons with paleoenvironmental data. Quaternary Science Reviews 17: 549585.
  • Birks HH, Birks HJB. 2000. Future uses of pollen analysis must include plant macrofossils. Journal of Biogeography 27: 3135.
  • Birks HJB, Peglar SM. 1980. Identification of Picea pollen of Late Quaternary age in Eastern North America: a numerical approach. Canadian Journal of Botany-Revue Canadienne De Botanique 58: 20432058.
  • Brubaker LB, Graumlich LJ, Anderson PM. 1987. An evaluation of statistical techniques for discriminating Picea glauca from Picea mariana pollen in Northern Alaska. Canadian Journal of Botany-Revue Canadienne De Botanique 65: 899906.
  • Cain S. 1948. Palynological studies at Sodon Lake: I. Size-frequency study of fossil spruce pollen. Science 108: 115117.
  • Chen C, Hendriks EA, Duin RPW, Reiber JHC, Hiemstra PS, de Weger LA, Stoel BC. 2006. Feasibility study on automated recognition of allergenic pollen: grass, birch and mugwort. Aerobiologia 22: 275284.
  • Curry BB, Grimm EC, Slate JE, Hansen BCS, Konen ME. 2007. The Late-Glacial and Early Holocene geology, paleoecology, and paleohydrology of the Brewster Creek Site, a proposed wetland restoration site, Pratt's Wayne Woods Forest Preserve, and James ‘Pate’ Philip State Park, Bartlett, Illinois. Circular 571. Illinois Department of Natural Resources. Illinois State Geological Survey.
  • Dell'Anna R, Lazzeri P, Frisanco M, Monti F, Malvezzi Campeggi F, Gottardini E, Bersani M. 2009. Pollen discrimination and classification by Fourier transform infrared (FT-IR) microspectroscopy and machine learning. Analytical and Bioanalytical Chemistry 394: 14431452.
  • Erdtman G. 1931. Pollen-statistics: a new research method in paleo-ecology. Science (New York, NY) 73: 399401.
  • Faegri K, Kaland PE, Krzywinski K. 1989. Textbook of pollen analysis. Chichester, UK and New York, NY, USA: Wiley.
  • France I, Duller AWG, Duller GAT, Lamb HF. 2000. A new approach to automated pollen analysis. Quaternary Science Reviews 19: 537546.
  • Hansen BCS, Engstrom DR. 1985. A comparison of numerical and qualitative methods of separating pollen of black and white spruce. Canadian Journal of Botany-Revue Canadienne De Botanique 63: 21592163.
  • Holt K, Allen G, Hodgson R, Marsland S, Flenley J. 2011. Progress towards an automated trainable pollen location and classifier system for use in the palynology laboratory. Review of Palaeobotany and Palynology 167: 175183.
  • Jackson ST, Webb RS, Anderson KH, Overpeck JT, Webb T, Williams JW, Hansen BCS. 2000. Vegetation and environment in eastern North America during the Last Glacial Maximum. Quaternary Science Reviews 19: 489508.
  • Landsmeer SH, Hendriks EA, De Weger LA, Reiber JHC, Stoel BC. 2009. Detection of pollen grains in multifocal optical microscopy images of air samples. Microscopy Research and Technique 72: 424430.
  • Langford M, Taylor GE, Flenley JR. 1990. Computerized identification of pollen grains by texture analysis. Review of Palaeobotany and Palynology 64: 197203.
  • Li P, Flenley JR. 1999. Pollen texture identification using neural networks. Grana 38: 5964.
  • Li P, Treloar WJ, Flenley JR, Empson L. 2004. Towards automation of palynology 2: the use of texture measures and neural network analysis for automated identification of optical images of pollen grains. Journal of Quaternary Science 19: 755762.
  • Lindbladh MS, O'Connor R, Jacobson GL. 2002. Morphometric analysis of pollen grains for paleoecological studies: classification of Picea from eastern North America. American Journal of Botany 89: 14591467.
  • MacLeod N, Benfield M, Culverhouse P. 2010. Time to automate identification. Nature 467: 154155.
  • Rodriguez-Damian M, Cernadas E, Formella A, Fernandez-Delgado M, De Sa-Otero P. 2006. Automatic detection and classification of grains of pollen based on shape and texture. IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Reviews 36: 531542.
  • Ronneberger O, Schultz E, Burkhardt H. 2002. Automated pollen recognition using 3D volume images from fluorescence microscopy. Aerobiologia 18: 107115.
  • Tcheng DK, Lambert BL, Lu SCY, Rendell LA. 1989. Building robust learning systems by combining induction and optimization. Proceedings of the 11th International Joint Conference on Artificial Intelligence 1: 806812.
  • Tcheng DK, Lambert BL, Lu SCY, Rendell LA. 1991. AIMS: an adaptive interactive modeling system for supporting engineering decision making. Machine Learning: Proceedings of the 8th International Workshop 1: 645649.
  • Treloar WJ, Taylor GE, Flenley JR. 2004. Towards automation of palynology 1: analysis of pollen shape and ornamentation using simple geometric measures, derived from scanning electron microscope images. Journal of Quaternary Science 19: 745754.
  • Weigel A, Schild D, Zeug A. 2009. Resolution in the ApoTome and the confocal laser scanning microscope: comparison. Journal of Biomedical Optics 14: 014022.
  • Wilson LR. 1938. The postglacial history of vegetation in northwestern Wisconsin. Rhodora 40: 137175.
  • Wilson LR, Kosanke RM. 1940. The microfossils in a pre-Kansan peat deposit near Belle Plaine, Iowa. Torreya 40: 15.
  • Wilson LR, Webster RM. 1942. Microfossil studies of three northcentral Wisconsin bogs. Transcript of the Wisconsin Academy of Science Arts and Letters 34: 177193.
  • Zhang Y, Fountain DW, Hodgson RM, Flenley JR, Gunetileke S. 2004. Towards automation of palynology 3: pollen pattern recognition using Gabor transforms and digital moments. Journal of Quaternary Science 19: 763768.