SEARCH

SEARCH BY CITATION

References

  • Abirached-Darmency M, Abdel-gawwad MR, Conejero G, Verdeil JL, Thompson R. 2005. In situ expression of two storage protein genes in relation to histo-differentiation at mid-embryogenesis in Medicago truncatula and Pisum sativum seeds. Journal of Experimental Botany 56: 20192028.
  • Aubert G, Morin J, Jacquin F, Loridon K, Quillet MC, Petit A, Rameau C, Lejeune-Hénaut I, Huguet T, Burstin J. 2006. Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula. Theoretical and Applied Genetics 112: 10241041.
  • Batchelor AK, Boutilier K, Miller SS, Labbé H, Bowman L, Hu M, Johnson DA, Gijzen M, Miki BL. 2000. The seed coat-specific expression of a subtilisin-like gene, SCS1, from soybean. Planta 211: 484492.
  • Beilinson V, Moskalenko OV, Livingstone DS, Reverdatto SV, Jung R, Nielsen NC. 2002. Two subtilisin-like proteases from soybean. Physiologia Plantarum 115: 585597.
  • Benedito VA, Torres-Jerez I, Murray JD, Andriankaja A, Allen S, Kakar K, Wandrey M, Verdier J, Zuber H, Ott T et al. 2008. A gene expression atlas of the model legume Medicago truncatula. Plant Journal 55: 504513.
  • Berger D, Altmann T. 2000. A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. Genes and Development 14: 11191131.
  • Berger F, Grini PE, Schnittger A. 2006. Endosperm: an integrator of seed growth and development. Current Opinion in Plant Biology 9: 664670.
  • Bordat A, Savois V, Nicolas M, Salse J, Chauveau A, Bourgeois M, Potier J, Houtin H, Rond C, Murat F et al. 2011. Translational genomics in legumes allowed placing in silico 5460 unigenes on the pea functional map and identified candidate genes in Pisum sativum L. Genes, Genomes, Genetics 1: 93103.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry 72: 248254.
  • Bradley D, Carpenter R, Sommer H, Hartley N, Coen E. 1993. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell 72: 8595.
  • Burstin J, Marget P, Huart M, Moessner A, Mangin B, Duchene C, Desprez B, Munier-Jolain N, Duc G. 2007. Developmental genes have pleiotropic effects on plant morphology and source capacity, eventually impacting on seed protein content and productivity in pea. Plant Physiology 144: 768781.
  • Cedzich A, Huttenlocher F, Kuhn BM, Pfannstiel J, Gabler L, Stintzi A, Schaller A. 2009. The protease-associated domain and C-terminal extension are required for zymogen processing, sorting within the secretory pathway, and activity of tomato subtilase 3 (SlSBT3). Journal of Biological Chemistry 284: 1406814078.
  • Coen ES, Romero JM, Doyle S, Elliott R, Murphy G, Carpenter R. 1990. floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell 63: 13111322.
  • Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR et al. 2004. Efficient discovery of DNA polymorphisms in natural populations by EcoTILLING. Plant Journal 37: 778786.
  • Dalmais M, Schmidt J, Le Signor C, Moussy F, Burstin J, Savois V, Aubert G, Brunaud V, de Oliveira Y, Guichard C et al. 2008. UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome Biology 9: R43.
  • Deulvot C, Charrel H, Marty A, Jacquin F, Donnadieu C, Lejeune-Hénaut I, Burstin J, Aubert G. 2010. Highly-multiplexed SNP genotyping for genetic mapping and germplasm diversity studies in pea. BMC Genomics 11: 468.
  • Fiume E, Fletcher JC. 2012. Regulation of Arabidopsis embryo and endosperm development by the polypeptide signaling molecule CLE8. Plant Cell 24: 10001012.
  • Fontanini D, Jones BL. 2002. SEP-1 – a subtilisin-like serine endopeptidase from germinated seeds of Hordeum vulgare L. cv. Morex. Planta 215: 885893.
  • Gallardo K, Firnhaber C, Zuber H, Héricher D, Belghazi M, Henry C, Küster H, Thompson R. 2007. A combined proteome and transcriptome analysis of developing Medicago truncatula seeds: evidence for metabolic specialization of maternal and filial tissues. Molecular and Cellular Proteomics 6: 21652179.
  • Garcia D, Saingery V, Chambrier P, Mayer U, Jurgens G, Berger F. 2003. Arabidopsis haiku mutants reveal new controls of seed size by endosperm. Plant Physiology 131: 16611670.
  • Hanai H, Matsuno T, Yamamoto M, Matsubayashi Y, Kobayashi T, Kamada H, Sakagami Y. 2000. A secreted peptide growth factor, phytosulfokine, acting as a stimulatory factor of carrot somatic embryo formation. Plant and Cell Physiology 41: 2732.
  • Janzik I, Macheroux P, Amrhein N, Schaller A. 2000. LeSBT1, a subtilase from tomato plants. Overexpression in insect cells, purification, and characterization. Journal of Biological Chemistry 275: 51935199.
  • Le BH, Cheng C, Bui AQ, Wagmaister JA, Henry KF, Pelletier J, Kwong L, Belmonte M, Kirkbride R, Horvath S et al. 2010. Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proceedings of the National Academy of Sciences, USA 107: 80638070.
  • Le Signor C, Savois V, Aubert G, Verdier J, Nicolas M, Pagny G, Moussy F, Sanchez M, Baker D, Clarke J et al. 2009. Optimizing TILLING populations for reverse genetics in Medicago truncatula. Plant Biotechnology Journal 7: 430441.
  • Liu JX, Srivastava R, Howell S. 2009. Overexpression of an Arabidopsis gene encoding a subtilase (AtSBT5.4) produces a clavata-like phenotype. Planta 230: 687697.
  • Luft JH. 1961. Improvements in epoxy resin embedding methods. Journal of Cell Biology 9: 409414.
  • McCallum C, Comai L, Greene E, Henikoff S. 2000. Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiology 123: 439442.
  • Melkus G, Rolletschek H, Radchuk R, Fuchs J, Rutten T, Wobus U, Altmann T, Jakob P, Borisjuk L. 2009. The metabolic role of the legume endosperm: a noninvasive imaging study. Plant Physiology 151: 11391154.
  • Munier-Jolain N, Ney B. 1998. Seed growth rate in grain legumes II. Seed growth rate depends on cotyledon cell number. Journal of Experimental Botany 49: 19711976.
  • Neff MM, Neff JD, Chory J, Pepper AE. 1998. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant Journal 14: 387392.
  • Ng PC, Henikoff S. 2003. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Research 31: 38123814.
  • Rasband WS. 1997–2008. ImageJ. Bethesda, MD, USA: US National Institutes of Health. http://rsb.info.nih.gov/ij/.
  • Rautengarten C, Steinhauser D, Büssis D, Stintzi A, Schaller A, Kopka J, Altmann T. 2005. Inferring hypotheses on functional relationships of genes: analysis of the Arabidopsis thaliana subtilase gene family. PLoS Computational Biology 1: e40.
  • Rautengarten C, Usadel B, Neumetzler L, Hartmann J, Büssis D, Altmann T. 2008. A subtilisin-like serine protease essential for mucilage release from Arabidopsis seed coats. Plant Journal 54: 466480.
  • Rayburn LYM, Rhea J, Jocoy SR, Bender M. 2009. The proprotein convertase amontillado (amon) is required during Drosophila pupal development. Developmental Biology 333: 4856.
  • Ronfort J, Bataillon T, Santoni S, Delalande M, David JL, Prosperi JM. 2006. Microsatellite diversity and broad scale geographic structure in a model legume: building a set of nested core collection for studying naturally occurring variation in Medicago truncatula. BMC Plant Biology 6: 28.
  • SAS. 1999. Statistical Analysis System software. Cary, NC, USA: SAS Institute Inc.
  • Schaller A, Stintzi A, Graff L. 2012. Subtilases – versatile tools for protein turnover, plant development, and interactions with the environment. Physiologia Plantarum 145: 5266.
  • Scott RJ, Spielman M, Bailey J, Dickinson HG. 1998. Parent-of-origin effects on seed development in Arabidopsis thaliana. Development 125: 33293341.
  • Srivastava R, Liu JX, Howell SH. 2008. Proteolytic processing of a precursor protein for a growth-promoting peptide by a subtilisin serine protease in Arabidopsis. Plant Journal 56: 219227.
  • Strongin AY, Izotova LS, Abramov ZT, Gorodetsky Dl, Ermakova LM, Baratova LA, Belyanova LP, Stepanov VM. 1978. Intracellular serine protease of Bacillus subtilis: sequence homology with extracellular subtilisins. Journal of Bacteriology 133: 14011411.
  • Tadege M, Wen J, He J, Tu H, Kwak Y, Eschstruth A, Cayrel A, Endre G, Zhao PX, Chabaud M et al. 2008. Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant Journal 54: 335347.
  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony methods. Molecular Biology and Evolution 28: 27312739.
  • Tanaka H, Onouchi H, Kondo M, Hara-Nishimura I, Nishimura M, Machida C, Machida Y. 2001. A subtilisin-like serine protease is required for epidermal surface formation in Arabidopsis embryos and juvenile plants. Development 128: 46814689.
  • Thoquet P, Gherardi M, Journet EP, Kereszt A, Ane JM, Prosperi JM, Huguet T. 2002. The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes. BMC Plant Biology 2: 1.
  • Tzafrir I, McElver JA, Liu CM, Yang LJ, Wu JQ, Martinez A, Patton DA, Meinke DW. 2002. Diversity of TITAN functions in Arabidopsis seed development. Plant Physiology 128: 3851.
  • Vandecasteele C, Teulat-Merah B, Morère-Le Paven MC, Leprince O, Ly Vu B, Viau L, Ledroit L, Pelletier S, Payet N, Satour P et al. 2011. QTL analysis reveals a correlation between the ratio of sucrose/raffinose family oligosaccharides and seed vigour in Medicago truncatula. Plant, Cell & Environment 34: 14731487.
  • Vartapetian AB, Tuzhikov AI, Chichkova NV, Taliansky M, Wolpert TJ. 2011. A plant alternative to animal caspases: subtilisin-like proteases. Cell Death and Differentiation 18: 12891297.
  • Von Groll U, Berger D, Altmann T. 2002. The subtilisin-like serine protease SDD1 mediates cell-to-cell signaling during Arabidopsis stomatal development. Plant Cell 14: 15271539.
  • Wang YT, Yang CY, Chen Y-T, Lin Y, Shaw J-F. 2004. Characterization of senescence-associated proteases in postharvest broccoli florets. Plant Physiology and Biochemistry 42: 663670.
  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ. 2007. An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2: e718.
  • Yamagata H, Uesugi M, Saka K, Iwasaki T, Aizono Y. 2000. Molecular cloning and characterization of a cDNA and a gene for subtilisin-like serine proteases from rice (Oryza sativa L.) and Arabidopsis thaliana. Bioscience, Biotechnology, and Biochemistry 64: 19471957.
  • Yang S, Johnston N, Talideh E, Mitchell S, Jeffree C, Goodrich J, Ingram G. 2008. The endosperm-specific ZHOUPI gene of Arabidopsis thaliana regulates endosperm breakdown and embryonic epidermal development. Development 135: 35013509.
  • Young ND, Debellé F, Oldroyd GE, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KF, Gouzy J, Schoof H et al. 2011. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480: 520524.