SEARCH

SEARCH BY CITATION

References

  • Barneix AJ. 2007. Physiology and biochemistry of source-regulated protein accumulation in the wheat grain. Journal of Plant Physiology 164: 581590.
  • Bernacchi CJ, Portis AR, Nakano H, von Caemmerer S, Long SP. 2002. Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiology 130: 19921998.
  • Centritto M, Lauteri M, Monteverdi C, Serraj R. 2009. Leaf gas exchange, carbon isotope discrimination, and grain yield in contrasting rice genotypes subjected to water deficits during the reproductive stage. Journal of Experimental Botany 60: 23252339.
  • Chain F, Cote-Beaulieu C, Belzile F, Menzies JG, Belanger RR. 2009. A comprehensive transcriptomic analysis of the effect of silicon on wheat plants under control and pathogen stress conditions. Molecular Plant–Microbe Interaction 22: 13231330.
  • Chen W, Yao X, Cai K, Chen J. 2011. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biological Trace Element Research 142: 6776.
  • Dallagnol LJ, Rodrigues FA, DaMatta FM, Mielli MVB, Pereira SC. 2011. Deficiency in silicon uptake affects cytological, physiological, and biochemical events in the rice–Bipolaris oryzae interaction. Phytopathology 101: 92104.
  • DaMatta FM, Amaral JT, Rena AB. 1999. Growth periodicity in trees of Coffea arabica L. in relation to nitrogen supply and nitrate reductase activity. Field Crops Research 60: 223229.
  • DaMatta FM, Cunha RL, Antunes WC, Martins SVC, Araújo WL, Fernie AR, Moraes GABK. 2008. In field-grown coffee trees source–sink manipulation alters photosynthetic rates, independently of carbon metabolism, via alterations in stomatal function. New Phytologist 178: 348357.
  • DaMatta FM, Loos RA, Silva EA, Ducatti C, Loureiro ME. 2002. Effects of soil water deficit and nitrogen nutrition on water relations and photosynthesis of pot-grown Coffea canephora Pierre. Trees 16: 555558.
  • Epstein E. 2009. Silicon: its manifold roles in plants. Annals of Applied Biology 155: 155160.
  • Ethier GJ, Livingston NJ. 2004. On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar –von Caemmerer –Berry leaf photosynthesis model. Plant, Cell and Environment 27: 137153.
  • Evans JR, Kaldenhoff R, Genty B, Terashima I. 2009. Resistances along the CO2 diffusion pathway inside leaves. Journal of Experimental Botany 60: 22352248.
  • Farquhar GD, Ehleringer JR, Hubik KT. 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40: 503537.
  • Farquhar GD, von Caemmerer S, Berry JA. 1980. A biochemical-model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 7890.
  • Fauteux F, Chain F, Belzile F, Menzies JG, Belanger RR. 2006. The protective role of silicon in the Arabidopsis–powdery mildew pathosystem. Proceedings of the National Academy of Sciences, USA 103: 1755417559.
  • Fernie AR, Aharoni A, Willmitzer L, Stitt M, Tohge T, Kopka J, Carroll AJ, Saito K, Fraser PD, DeLuca V. 2011. Recommendations for reporting metabolite data. Plant Cell 23: 24772482.
  • Fleck AT, Nye T, Repenning C, Stahl F, Zahn M, Schenk MK. 2011. Silicon enhances suberization and lignification in roots of rice (Oryza sativa). Journal of Experimental Botany 62: 20012011.
  • Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Díaz-Espejo A, Douthe C, Dreyer E, Ferrio JP, Gago J et al. 2012. Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Science 193–194: 7084.
  • Flexas J, Díaz-Espejo A, Berry JA, Cifre J, Galmes J, Kaldenhoff R, Medrano H, Ribas-Carbó M. 2007a. Analysis of leakage in IRGA's leaf chambers of open gas exchange systems: quantification and its effects in photosynthesis parameterization. Journal of Experimental Botany 58: 15331543.
  • Flexas J, Ribas-Carbó M, Díaz-Espejo A, Galmés J, Medrano H. 2007b. Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant, Cell & Environment 30: 12841298.
  • Genty B, Briantais JM, Baker NR. 1989. The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta 990: 8792.
  • Harley PC, Loreto F, Dimarco G, Sharkey TD. 1992. Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiology 98: 14291436.
  • Hossain MT, Mori R, Soga K, Wakabayashi K, Kamisaka S, Fujii S, Yamamoto R, Hoson T. 2002. Growth promotion and an increase in cell wall extensibility by silicon in rice and some other Poaceae seedlings. Journal of Plant Research 11: 523527.
  • Ishibashi H. 1936. Influence of silica on the growth of rice plant. Japanese Journal of Soil Science and Plant Nutrition 10: 244256.
  • Johnson RA, Wichern DW. 1998. Applied multivariate statistical analysis. Upper Saddle River, NJ, USA: Prentice Hall.
  • Keeping MG, Reynolds OL. 2009. Silicon in agriculture: new insights, new significance and growing application. Annals of Applied Biology 155: 153154.
  • Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, Dormann P, Weckwerth W, Gibon Y, Stitt M et al. 2005. GMD$$$CSB.DB: the Golm metabolome database. Bioinformatics 21: 16351638.
  • Kruger LC, Volin JC. 2006. Reexamining the empirical relation between plant growth and leaf photosynthesis. Functional Plant Biology 33: 421429.
  • Kusano M, Tohge T, Fukushima A, Kobayashi M, Hayashi N, Otsuki H, Kondou Y, Goto H, Kawashima M, Matsuda F et al. 2011. Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV-B light. Plant Journal 67: 354369.
  • Less H, Galili G. 2008. Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses. Plant Physiology 147: 316330.
  • Li Y, Gao Y, Xu X, Shen Q, Guo S. 2009. Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration. Journal of Experimental Botany 60: 23512360.
  • Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR. 2006. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Protocols 1: 387396.
  • Luedemann A, Strassburg K, Erban A, Kopka J. 2008. TagFinder for the quantitative analysis of gas chromatography-mass spectrometry (GC-MS)-based metabolite profiling experiments. Bioinformatics 24: 732737.
  • Ma JF, Nishimura K, Takahashi E. 1989. Effect of silicon on the growth of rice plant at different growth-stages. Soil Science and Plant Nutrition 35: 347356.
  • Ma JF, Takahashi E. 2002. Soil, fertilizer, and plant silicon research in Japan. Amsterdam, the Netherlands: Elsevier Science.
  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M. 2006. A silicon transporter in rice. Nature 440: 688691.
  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M. 2007. An efflux transporter of silicon in rice. Nature 448: 209212.
  • Murchie EH, Chen YZ, Hubbart S, Peng SB, Horton P. 1999. Interactions between senescence and leaf orientation determine in situ patterns of photosynthesis and photoinhibition in field-grown rice. Plant Physiology 119: 553563.
  • Nwugo CC, Huerta AJ. 2008. Effects of silicon nutrition on cadmium uptake, growth and photosynthesis of rice plants exposed to low-level cadmium. Plant and Soil 311: 7386.
  • Nwugo CC, Huerta AJ. 2011. The effect of silicon on the leaf proteome of rice (Oryza sativa L.) plants under cadmium-stress. Journal of Proteome Research 10: 518528.
  • Okuda A, Takahashi E. 1961. Studies on the physiological role of silicon in crop plants. Part 4. Effect of silicon on the growth of barley, tomato, radish, green onion, Chinese cabbage and their nutrients uptake. Japanese Journal of the Science of Soil and Manure 32: 623626.
  • Pinelli P, Loreto F. 2003. 12CO2 emission from different metabolic pathways measured in illuminated and darkened C3 and C4 leaves at low, atmospheric and elevated CO2 concentration. Journal of Experimental Botany 54: 17611769.
  • Pons TL, Flexas J, von Caemmerer S, Evans JR, Genty B, Ribas-Carbó M, Brugnoli E. 2009. Estimating mesophyll conductance to CO2: methodology, potential errors and recommendations. Journal of Experimental Botany 60: 22172234.
  • Scafaro AP, von Caemmerer S, Evans JR, Atwell BJ. 2011. Temperature response of mesophyll conductance in cultivated and wild Oryza species with contrasting mesophyll cell wall thickness. Plant, Cell & Environment 34: 19992008.
  • Schauer N, Steinhauser D, Strelkov S, Schomburg D, Allison G, Moritz T, Lundgren K, Roessner-Tunali U, Forbes MG, Willmitzer L et al. 2005. GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Letters 579: 13321337.
  • Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL. 2007. Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant, Cell & Environment 30: 10351040.
  • Sweetlove LJ, Fernie AR. 2005. Regulation of metabolic networks: understanding metabolic complexity in the systems biology era. New Phytologist 168: 924.
  • Tamai K, Ma JF. 2008. Reexamination of silicon effects on rice growth and production under field conditions using a low silicon mutant. Plant and Soil 307: 2127.
  • Tholen D, Boom C, Noguchi K, Ueda S, Katase T, Terashima I. 2008. The chloroplast avoidance response decreases internal conductance to CO2 diffusion in Arabidopsis thaliana leaves. Plant, Cell & Environment 31: 16881700.
  • Tholen D, Zhu XG. 2011. The mechanistic basis of internal conductance: a theoretical analysis of mesophyll cell photosynthesis and CO2 diffusion. Plant Physiology 156: 90105.
  • Valentini R, Epron D, Angelis D, Matteucci G, Dreyer E. 1995. In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Quercus cerris L.) leaves: diurnal cycles under different levels of water supply. Plant, Cell & Environment 18: 631640.
  • Vivancos PD, Driscoll SP, Bulman CA, Ying L, Emami K, Treumann A, Mauve C, Noctor G, Foyer CH. 2011. Perturbations of amino acid metabolism associated with glyphosate-dependent inhibition of shikimic acid metabolism affect cellular redox homeostasis and alter the abundance of proteins involved in photosynthesis and photorespiration. Plant Physiology 157: 256268.
  • Winter H, Lohaus G, Heldt HW. 1992. Phloem transport of amino acids in relation to their cytosolic levels in barley leaves. Plant Physiology 99: 9961004.
  • Yamaji N, Ma JF. 2009. A transporter at the node responsible for intervascular transfer of silicon in rice. Plant Cell 21: 28782883.
  • Yoshida S. 1981. The fundamental of rice crop science. Los Baños, Philippines: International Rice Research Institute.