SEARCH

SEARCH BY CITATION

References

  • Bannenberg G, Martinez M, Rodriguez MJ, Lopez MA, Ponce de Leon I, Hamberg M, Castresana C. 2009. Functional analysis of α-DOX2, an active α-dioxygenase critical for normal development in tomato plants. Plant Physiology 151: 14211432.
  • Bartsch M, Bednarek P, Vivancos PD, Schneider B, von Roepenack-Lahaye E, Foyer CH, Kombrink E, Scheel D, Parker JE. 2010. Accumulation of isochorismate-derived 2,3-dihydroxybenzoic 3-O-β-D-xyloside in Arabidopsis resistance to pathogens and ageing of leaves. Journal of Biological Chemistry 285: 2565425665.
  • Bednarek P, Pislewska-Bednarek M, Svatos A, Schneider B, Doubsky J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A et al. 2009. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323: 101106.
  • Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate – a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological) 57: 289300.
  • Berkey R, Bendigeri D, Xiao S. 2012. Sphingolipids and plant defense/disease: the “death” connection and beyond. Frontiers in Plant Science 3: 68.
  • Brandfass C, Karlovsky P. 2006. Simultaneous detection of Fusarium culmorum and F. graminearum in plant material by duplex PCR with melting curve analysis. BMC Microbiology 6: 4.
  • Brodersen P, Petersen M, Pike HM, Olszak B, Skov S, Oedum N, Joergensen LB, Brown RE, Mundy J. 2002. Knockout of Arabidopsis ACCELERATED-CELL-DEATH11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes & Development 16: 490502.
  • Chen M, Markham JE, Cahoon EB. 2012. Sphingolipid Δ8 unsaturation is important for glucosylceramide biosynthesis and low-temperature performance in Arabidopsis. Plant Journal 69: 769781.
  • Chen M, Markham JE, Dietrich CR, Jaworski JG, Cahoon EB. 2008. Sphingolipid long-chain base hydroxylation is important for growth and regulation of sphingolipid content and composition in Arabidopsis. The Plant Cell 20: 18621878.
  • Chomczynski P, Mackey K. 1995. Short technical reports. Modification of the TRI reagent procedure for isolation of RNA from polysaccharide- and proteoglycan-rich sources. BioTechniques 19: 942945.
  • Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal 16: 735743.
  • Coursol S, Fan LM, Le Stunff H, Spiegel S, Gilroy S, Assmann SM. 2003. Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature 423: 651654.
  • De Leon IP, Sanz A, Hamberg M, Castresana C. 2002. Involvement of the Arabidopsis α-DOX1 fatty acid dioxygenase in protection against oxidative stress and cell death. Plant Journal 29: 6162.
  • Eynck C, Koopmann B, Grunewaldt-Stoecker G, Karlovsky P, Tiedemann A. 2007. Differential interactions of Verticillium longisporum and V. dahliae with Brassica napus detected with molecular and histological techniques. European Journal of Plant Pathology 118: 259274.
  • Frye CA, Innes RW. 1998. An Arabidopsis mutant with enhanced resistance to powdery mildew. The Plant Cell 10: 947956.
  • Glazebrook J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology 43: 205227.
  • Greenberg JT, Silverman FP, Liang H. 2000. Uncoupling salicylic acid-dependent cell death and defense-related responses from disease resistance in the Arabidopsis mutant acd5. Genetics 156: 341350.
  • Hagemeier J, Schneider B, Oldham NJ, Hahlbrock K. 2001. Accumulation of soluble and wall-bound indolic metabolites in Arabidopsis thaliana leaves infected with virulent or avirulent Pseudomonas syringae pathovar tomato strains. Proceedings of the National Academy of Sciences, USA 98: 753758.
  • Hama H. 2010. Fatty acid 2-hydroxylation in mammalian sphingolipid biology. Biochimica et Biophysica Acta 1801: 405414.
  • Hamberg M, Sanz A, Castresana C. 1999. α-oxidation of fatty acids in higher plants – identification of a pathogen-inducible oxygenase (PIOX) as an α-dioxygenase and biosynthesis of 2-hydroperoxylinolenic acid. Journal of Biological Chemistry 274: 2450324513.
  • Harrison S, Mott E, Parsley K, Aspinall S, Gray J, Cottage A. 2006. A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation. Plant Methods 2: 19.
  • Hornung E, Krueger C, Pernstich C, Gipmans M, Porzel A, Feussner I. 2005. Production of (10E,12Z)-conjugated linoleic acid in yeast and tobacco seeds. Biochimica et Biophysica Acta 1738: 105114.
  • Iven T, König S, Singh S, Braus-Stromeyer SA, Bischoff M, Tietze LF, Braus GH, Lipka V, Feussner I, Dröge-Laser W 2012. Transcriptional activation and production of tryptophan-derived secondary metabolites in Arabidopsis roots contributes to the defense against the fungal vascular pathogen Verticillium longisporum. Molecular Plant, doi: 10.1093/mp/sss1044.
  • Jefferson RA, Kavanagh TA, Bevan MW. 1987. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal 6: 39013907.
  • Kaever A, Landesfeind M, Possienke M, Feussner K, Feussner I, Meinicke P. 2012. MarVis-Filter: ranking, filtering, adduct and isotope correction of mass spectrometry data. Journal of Biomedicine and Biotechnology 2012: 263910.
  • Kaever A, Lingner T, Feussner K, Göbel C, Feussner I, Meinicke P. 2009. MarVis: a tool for clustering and visualization of metabolic biomarkers. BMC Bioinformatics 10: 92.
  • Kaya K, Ramesha CS, Thompson GA. 1984. On the formation of α-hydroxy fatty acids. Evidence for a direct hydroxylation of nonhydroxy fatty acid-containing sphingolipids. Journal of Biological Chemistry 259: 35483553.
  • Klosterman SJ, Atallah ZK, Vallad GE, Subbarao KV. 2009. Diversity, pathogenicity, and management of Verticillium species. Annual Review of Phytopathology 47: 3962.
  • Liang H, Yao N, Song JT, Luo S, Lu H, Greenberg JT. 2003. Ceramides modulate programmed cell death in plants. Genes & Development 17: 26362641.
  • Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J, Brandt W, Rosahl S, Scheel D et al. 2005. Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310: 11801183.
  • Lipka U, Fuchs R, Kuhns C, Petutschnig E, Lipka V. 2010. Live and let die – Arabidopsis nonhost resistance to powdery mildews. European Journal of Cell Biology 89: 194199.
  • Marion J, Bach L, Bellec Y, Meyer C, Gissot L, Faure J-D. 2008. Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings. Plant Journal 56: 169179.
  • Markham JE, Jaworski JG. 2007. Rapid measurement of sphingolipids from Arabidopsis thaliana by reversed-phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry 21: 13041314.
  • Markham JE, Li J, Cahoon EB, Jaworski JG. 2006. Separation and identification of major plant sphingolipid classes from leaves. Journal of Biological Chemistry 281: 2268422694.
  • Markham JE, Molino D, Gissot L, Bellec Y, Hematy K, Marion J, Belcram K, Palauqui J-C, Satiat-JeuneMaitre B, Faure J-D. 2011. Sphingolipids containing very-long-chain fatty acids define a secretory pathway for specific polar plasma membrane protein targeting in Arabidopsis. The Plant Cell 23: 23622378.
  • Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D. 2008. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. Journal of Lipid Research 49: 11371146.
  • Michaelson LV, Zäuner S, Markham JE, Haslam RP, Desikan R, Mugford S, Albrecht S, Warnecke D, Sperling P, Heinz E et al. 2009. Functional characterization of a higher plant sphingolipid Δ4-desaturase: defining the role of sphingosine and sphingosine-1-phosphate in Arabidopsis. Plant Physiology 149: 487498.
  • Mitchell AG, Martin CE. 1997. Fah1p, a Saccharomyces cerevisiae cytochrome b5 fusion protein, and its Arabidopsis thaliana homolog that lacks the cytochrome b5 domain both function in the α-hydroxylation of sphingolipid-associated very long chain fatty acids. Journal of Biological Chemistry 272: 2828128288.
  • Nagano M, Ihara-Ohori Y, Imai H, Inada N, Fujimoto M, Tsutsumi N, Uchimiya H, Kawai-Yamada M. 2009. Functional association of cell death suppressor, Arabidopsis Bax inhibitor-1, with fatty acid 2-hydroxylation through cytochrome b5. Plant Journal 58: 122134.
  • Nagano M, Takahara K, Fujimoto M, Tsutsumi N, Uchimiya H, Kawai-Yamada M. 2012. Arabidopsis sphingolipid fatty acid 2-hydroxylases (AtFAH1 and AtFAH2) are functionally differentiated in fatty acid 2-hydroxylation and stress responses. Plant Physiology 159: 11381148.
  • Ng CK, Carr K, McAinsh MR, Powell B, Hetherington AM. 2001. Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Nature 410: 596599.
  • Pata MO, Hannun YA, Ng CK-Y. 2010. Plant sphingolipids: decoding the enigma of the Sphinx. New Phytologist 185: 611630.
  • Peer M, Stegmann M, Müller MJ, Waller F. 2010. Pseudomonas syringae infection triggers de novo synthesis of phytosphingosine from sphinganine in Arabidopsis thaliana. FEBS Letters 584: 40534056.
  • Ralhan A, Schoettle S, Thurow C, Iven T, Feussner I, Polle A, Gatz C. 2012. The vascular pathogen Verticillium longisporum requires a jasmonic acid-independent COI1 function in roots to elicit disease symptoms in Arabidopsis thaliana shoots. Plant Physiology 159: 11921203.
  • Saucedo-García M, Guevara-García A, González-Solís A, Cruz-García F, Vázquez-Santana S, Markham JE, Lozano-Rosas MG, Dietrich CR, Ramos-Vega M, Cahoon EB et al. 2011. MPK6, sphinganine and the LCB2a gene from serine palmitoyltransferase are required in the signaling pathway that mediates cell death induced by long chain bases in Arabidopsis. New Phytologist 191: 943957.
  • Shi L, Bielawski J, Mu J, Dong H, Teng C, Zhang J, Yang X, Tomishige N, Hanada K, Hannun YA et al. 2007. Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis. Cell Research 17: 10301040.
  • Sperling P, Heinz E. 2003. Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochimica at Biophysica Acta 1632: 115.
  • Sperling P, Zähringer U, Heinz E. 1998. A sphingolipid desaturase from higher plants – identification of a new cytochrome b5 fusion protein. Journal of Biological Chemistry 273: 2859028596.
  • Ternes P, Feussner K, Werner S, Lerche J, Iven T, Heilmann I, Riezman H, Feussner I. 2011. Disruption of the ceramide synthase LOH1 causes spontaneous cell death in Arabidopsis thaliana. New Phytologist 192: 841854.
  • Townley HE, McDonald K, Jenkins GI, Knight MR, Leaver CJ. 2005. Ceramides induce programmed cell death in Arabidopsis cells in a calcium-dependent manner. Biological Chemistry 386: 161166.
  • Wang W, Yang X, Tangchaiburana S, Ndeh R, Markham JE, Tsegaye Y, Dunn TM, Wang G-L, Bellizzi M, Parsons JF et al. 2008. An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis. The Plant Cell 20: 31633179.
  • Warnecke D, Heinz E. 2003. Recently discovered functions of glucosylceramides in plants and fungi. Cellular and Molecular Life Sciences 60: 919941.