IN VITRO BIOSYNTHESIS OF TUBULIN ON TOTAL, FREE AND MEMBRANE-BOUND POLYSOMES FROM THE DEVELOPING RAT BRAIN

Authors


Abstract

Abstract— Incorporation of [3H]leucine into tubulin and total protein was examined using a polysomal system from newborn (1-day-old). young (10-day-old) and adult (3-month-old) rat brains and cerebral cortices. The rate of tubulin biosynthesis (specific radioactivity) was always lower than that of total protein biosynthesis. No significant differences in the specific radioactivities of the synthesized total proteins were found between the newborn and young brain polysomal system, although young cerebral cortical polysomes were less active than newborn cerebral cortical polysomes. The adult brain (or cerebral cortical) polysomes were less active, about 20-30% lower than the young brain (or cerebral cortical) polysomes. The incorporation of [3H]leucine into tubulin showed a progressive decrease in the polysomal systems isolated from the newborn, young and adult rat brains and cerebral cortices. These tendencies were similar in every cell sap taken from newborn, young and adult rat brain homogenates.

In order to examine the relative activities of free and bound polysomes of the developing rat brain in tubulin biosynthesis. double-labelling experiments were carried out. Labelled tubulin was purified by the assembly and disassembly method, followed by SDS gel electrophoresis, or by vinblastine precipitation method, followed by SDS gel electrophoresis; then identification by co-electrophoresis with native brain tubulin, molecular weight determination and demonstration of specific aggregation in the presence of GTP followed. Free and bound polysomes showed approximately similar activities during tubulin biosynthesis. Furthermore, relative activities of tubulin biosynthesis by free and bound polysomes did not significantly change during development.

Ancillary