SEARCH

SEARCH BY CITATION

REFERENCES

  • Abdel-Latif A. A. (1986) Calcium mobilizing receptors, polyphos-phoinositides, and the generation of second messengers. Pharmacol. Rev. 38, 227272.
  • Abdel-Latif A. A., Yau S.-J., and Smith J. P. (1974) Effect of neuro-transmitters on phospholipid metabolism in rat cerebral-cortex slices—cellular and subcellular distribution. J. Neurochem. 22, 383393.
  • Agranoff B. W. (1978) Cyclitol confusion. Trends Biochem. Sci. 3, N283N285.
  • Agranoff B. W. (1981) Learning and memory: biochemical approaches, in Basic Neurochemistry (Katzman, R., eds), pp. 801820. Little Brown and Co., Boston .
  • Agranoff B. W. (1987) Receptor-mediated phosphoinositide metabolism, in Advances in Experimental Biology and Medicine: Molecular Mechanisms of Neuronal Responsiveness (LenoxR. H., eds), in press. Plenum Press, New York .
  • Agranoff B. W. and Seguin E. B. (1974) Preparation of inositol trisphosphate from brain: GLC of trimethylsilyl derivative. Prep. Biochem. 4, 359366.
  • Agranoff B. W., Bradley R. M., and Brady R. O. (1958) The enzymatic synthesis of inositol phosphatide. J. Biol. Chem. 233, 10771083.
  • Agranoff B. W., Murthy P., and Seguin E. B. (1983) Thrombin-induced phosphodiesteratic cleavage of phosphatidylinositol bisphosphate in human platelets. J. Biol. Chem. 258, 20762078.
  • Agranoff B. W., Eisenberg, F., Hauser, G., Hawthorne J. N., and Michell R. H. (1985) Comment on abbreviations, in Cyclitols and Inositides (Eichberg, J., eds), pp. xxixxii. Humana Press, Clifton , New Jersey .
  • Akhtar R. A. and Abdel-Latif A. A. (1980) Requirement for calcium ions in acetylcholine-stimulated phosphodiesteratic cleavage of phosphatidyl-myo-inositol 4,5-bisphosphate in rabbit iris smooth muscle. Biochem. J. 192, 783791.
  • Akhtar R. A. and Abdel-Latif A. A. (1986) Surgical sympathetic denervation increases α1-adrenoceptor-mediated accumulation of myo-inositol trisphosphate and muscle contraction in rabbit iris dilator smooth muscle. J. Neurochem. 46, 96104.
  • Akiyama K., Vickroy T. W., Watson M., Roeske W. R., Reisine T. D., Smith T. L., and Yamamura H. I. (1986) Muscarinic cholinergic ligand binding to intact mouse pituitary tumor cells (AtT-20/D16–16) coupling with two biochemical effectors: ad-enylate cyclase and phosphatidylinositol turnover. J. Pharmacol. Exp. Ther. 236, 653661.
  • Allison J. H. and Blisner M. E. (1976) Inhibition of the effect of lithium on brain inositol by atropine and scopolamine. Biochem. Biophys. Res. Commun. 68, 13321338.
  • Allison J. H., Blisner M. E., Holland W. H., Hipps P. P., and Sherman W. R. (1976) Increased brain myo-inositol 1-phosphate in lithium-treated rats. Biochem. Biophys. Res. Commun. 71, 664670.
  • Anderson R. E. and Hollyfield J. G. (1981) Light stimulates the incorporation of inositol into phosphatidylinositol in the retina. Biochim. Biophys. Acta. 665, 619622.
  • Anderson R. E. and Hollyfield J. G. (1984) Inositol incorporation into phosphoinositides in retinal horizontal cells of Xenopus laevis: enhancement by acetylcholine, inhibition by glycine. J. Cell Biol. 99, 686691.
  • Anderson R. E., Maude M. B., Kelleher P. A., Rayborn M. E., and Hollyfield J. G. (1983) Phosphoinositide metabolism in the retina: localization to horizontal cells and regulation by light and divalent cations. J. Neurochem. 41, 764771.
  • Audigier S., Barberis C., and Jard S. (1986) Vasoactive intestinal polypeptide increases inositol phospholipid breakdown in the rat superior cervical ganglion. Brain Res. 376, 363367.
  • Baraban J. M., Snyder S. H., and Alger B. E. (1985) Protein kinase C regulates ionic conductance in hippocampal pyramidal neurons: electrophysiological effects of phorbol esters. Proc. Natl. Acad. Sci. USA 82, 25382542.
  • Batty I. R., Nahorski S. R., and Irvine R. F. (1985) Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices. Biochem. J. 232, 211215.
  • Baudry M., Evans J., and Lynch G. (1986) Excitatory amino acids inhibit stimulation of phosphatidylinositol metabolism by aminergic agonists in hippocampus. Nature 319, 329331.
  • Baukal A. J., Guillemette G., Rubin R., Spat A., and Catt K. J. (1985) Binding sites for inositol trisphosphate in the bovine adrenal cortex. Biochem. Biophys. Res. Commun. 133, 532538.
  • Bell M. E., Peterson R. G., and Eichberg J. (1982) Metabolism of phospholipids in peripheral nerve from rats with chronic strep-tozotocin-induced diabetes: increased turnover of phosphati-dylinositol-4,5-bisphosphate. J. Neurochem. 39, 192200.
  • Benjamins J. A. and Agranoff B. W. (1969) Distribution and properties of CDP-diglyceride: inositol transferase from brain. J. Neurochem. 16, 513527.
  • Benowitz L. I. and Lewis E. R. (1983) Increased transport of 44,000–to 49,000-dalton acidic proteins during regeneration of the goldfish optic nerve: a two-dimensional gel analysis. J. Neu-rosci. 3, 21532163.
  • Berridge M. J. (1984) Inositol trisphosphate and diacylglycerol as second messengers. Biochem. J. 220, 345360.
  • Berridge M. (1986) Second messenger dualism in neuromodulation and memory. Nature 323, 294295.
  • Berridge M. J. and Irvine R. F. (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312, 315321.
  • Berridge M. J., Downes C. P., and Hanley M. R. (1982) Lithium amplified agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem. J. 206, 587595.
  • Berridge M. J., Dawson R. M. C., Downes C. P., Heslop J. P., and Irvine R. F. (1983) Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoino-sitides. Biochem. J. 212, 473482.
  • Berti-Mattera L., Peterson R., Bell M., and Eichberg J. (1985) Effect of hyperglycemia and its prevention by insulin treatment on the incorporation of 32P into polyphosphoinositides and other phospholipids in peripheral nerve of the streptozotocin diabetic rat. J. Neurochem. 45, 16921698.
  • Bone E. A. and Michell R. H. (1985) Accumulation of inositol phosphates in sympathetic ganglia. Effects of depolarization and of amine peptide neurotransmitters. Biochem. J. 227, 263269.
  • Bone E. A., Fretten P., Palmer S., Kirk C. J., and Michell R. H. (1984) Rapid accumulation of inositol phosphates in isolated rat superior cervical sympathetic ganglia exposed to V1-vaso-pressin and muscarinic cholinergic stimuli. Biochem. J. 221, 803811.
  • Briggs C. A., Horwitz J., McAfee D. A., Tsymbalov S., and Perlman R. L. (1985) Effects of neuronal activity on inositol phospho-lipid metabolism in the rat autonomic nervous system. J. Neurochem. 44, 731739.
  • Brown E., Kendall D. A., and Nahorski S. R. (1984) Inositol phos-pholipid hydrolysis in rat cerebral cortical slices: 1. Receptor characterisation. J. Neurochem. 42, 13791387.
  • Brown J. H. and Brown S. L. (1984) Agonists differentiate muscarinic receptors that inhibit cyclic AMP formation from those that stimulate phosphoinositide metabolism. J. Biol. Chem 259, 37773781.
  • Brown J. H., Goldstein D., and Masters S. B. (1985) The putative Ml muscarinic receptor does not regulate phosphoinositide hydrolysis: studies with pirenzepine and McN-A-343 in chick heart and astrocytoma cells. Mol. Pharmacol. 27, 525531.
  • Burgess G. M., Godfrey P. P., McKinney J. S., Berridge, M. J., Irvine, R. F., and Putney, J. W. (1984) The second messenger linking receptor activation to internal Ca release in liver. Nature 309, 6366.
  • Carswell H. and Young J. M. (1986) Regional variation in the characteristics of histamine H1-agonist-mediated breakdown of inositol phospholipids in guinea-pig brain. Br. J. Pharmacol. 89, 809817.
  • Carter J. R. and Kennedy E. P. (1966) Enzymatic synthesis of cyti-dine diphosphate diglyceride. J. Lipid Res. 7, 678683.
  • Cheek T. R. and Burgoyne R. D. (1985) Effect of activation of muscarinic receptors on intracellular free calcium and secretion in bovine adrenal chromaffin cells. Biochim. Biophys. Acta 846, 167173.
  • Claro E., Arbones L., Garcia A., and Picatoste F. (1986) Phosphoinositide hydrolysis mediated by histamine H1-receptors in rat brain cortex. Eur. J. Pharmacol. 123, 187196.
  • Cohen N. M., Schmidt D. M., McGlennen R. C., and Klein W. L. (1983) Receptor-mediated increases in phosphatidylinositol turnover in neuron-like cell lines. J. Neurochem 40, 547554.
  • Colodzin M. and Kennedy E. P. (1965) Biosynthesis of diphospho-inositide in brain. J. Biol. Chem. 240, 37713780.
  • Conn P. J. and Sanders-Bush E. (1984) Selective 5HT-2 antagonists inhibit serotonin stimulated phosphatidylinositol metabolism in cerebral cortex. Neuropharmacology 23, 993996.
  • Conn P. J. and Sanders-Bush E. (1985) Serotonin-stimulated phosphoinositide turnover: mediation by the S2 binding site in rat cerebral cortex but not in subcortical regions. J. Pharmacol. Exp. Ther. 234, 195203.
  • Conn P. J. and Sanders-Bush E. (1986) Biochemical characterization of serotonin stimulated phosphoinositide turnover. Life Sci. 38, 663669.
  • Conn P. J., Sanders-Bush E., Hoffman B. J., and Hartig P. R. (1986) A unique serotonin receptor in choroid plexus is linked to phosphatidylinositol turnover. Proc. Natl. Acad. Sci. USA 83, 40864088.
  • Connolly T. M. and Majerus P. W. (1986) Protein kinase C (PKC) phosphorylates human platelet inositol trisphosphate 5′-phos-phomonoesterase (IP3 5′-p'tase) increasing phosphatase activity. Fed. Proc. 45, 1872.
  • Connolly T. M., Bross T. E., and Majerus P. W. (1985) Isolation of a phosphomonoesterase from human platelets that specifically hydrolyzes the 5-phosphate of inositol 1,4,5-trisphosphate. J. Biol. Chem. 260, 78687874.
  • Connolly T. M., Wilson D. B., Bross T. E., and Majerus P. W. (1986) Isolation and characterization of the inositol cyclic phosphate products of phosphoinositide cleavage by phospho-lipase C. J. Biol. Chem. 261, 122126.
  • Daniel L. W., Waite M., and Wykle R. L. (1986) A novel mechanism of diglyceride formation. J. Biol. Chem. 261, 91289132.
  • Daum P. R., Downes C. P., and Young J. M. (1983) Histamine-induced inositol phospholipid breakdown mirrors H1-receptor density in brain. Eur. J. Pharmacol. 87, 497498.
  • Daum P. R., Downes C. P., and Young J. M. (1984) Histamine stimulation of inositol 1-phosphate accumulation in lithium-treated slices from regions of guinea pig brain. J. Neurochem. 43, 2532.
  • Dawson A. P. (1985) GTP enhances inositol trisphosphate-stimu-lated Ca2+ release from rat liver microsomes. FEBS Lett. 185, 147150.
  • Dawson R. M. C. (1959) Studies on the enzymic hydrolysis of monophosphoinositide by phospholipase preparations from P. notatum and ox pancreas. Biochim. Biophys. Acta 33, 6877.
  • Dawson R. M. C., Freinkel N., Jungalwala F. B., and Clarke N. (1971) The enzymic formation of myoinositol 1:2 cyclic phosphate from phosphatidylinositol. Biochem. J. 122, 605607.
  • De Riemer S. A., Strong J. A., Albert K. A., Greengard P., and Kaczmarek L. K. (1986) Enhancement of calcium current in Aplysia neurones by phorbol ester and protein kinase C. Na-ture 313, 313316.
  • Donaldson J. and Hill S. J. (1986) Histamine-induced hydrolysis of polyphosphoinositides in guinea-pig ileum and brain. Eur. J. Pharmacol. 124, 255265.
  • Downes C. P. (1982) Receptor-stimulated inositol phospholipid metabolism in the central nervous system. Cell Calcium 3, 413428.
  • Downes C. P. (1983) Inositol phospholipids and neurotransmitter-receptor signalling mechanisms. Trends Neurosci 6, 313316.
  • Downes C. P. (1986) Inositol phosphates: concord or confusion? Trends Neurosci. 9, 394396.
  • Downes C. P. and Stone M. A. (1986) Lithium-induced reduction in intracellular inositol supply in cholinergically stimulated parotid gland. Biochem. J. 234, 199204.
  • Drummond A. H. and Raeburn C. A. (1984) The interaction of lithium with thyrotropin-releasing hormone-stimulated lipid metabolism in GH3 pituitary tumour cells. Biochem. J. 224, 129136.
  • Eberhard D. and Holz R. W. (1987) Nicotinic and muscarinic receptor activation and micromolar Ca2+ stimulate production of inositol phosphates in bovine adrenal chromaffin cells. J. Neurochem. (in press).
  • Eichberg J. and Hauser G. (1973) The subcellular distribution of polyphosphoinositides in myelinated and unmyelinated rat brain. Biochim. Biophys. Acta 326, 210223.
  • Eisenberg, F. (1967) d-Myoinositol 1-phosphate as product of cyclization of glucose 6-phosphate and substrate for a specific phosphatase in rat testis. J. Biol. Chem. 242, 13751382.
  • Enjalbert A., Sladeczek F., Guillon G., Bertrand P., Shu C., Epel-baum J., Garcia-Sainz A., Jard S., Lombard C., Kordon C., and Bockaert J. (1986) Angiotensin II and dopamine modulate both cAMP and inpsitol phosphate productions in anterior pituitary cells. J. Biol. Chem. 261, 40714075.
  • Erneaux C., Delvaux A., Moreau C., and Dumont J. E. (1986) Characterization of d-myo-inositol 1,4,5-trisphosphate phosphatase in rat brain. Biochem. Biophys. Res. Commun. 134, 351358.
  • Eva C. and Costa E. (1986) Potassium ion facilitation of phospho-inositide turnover activation by muscarinic receptor agonists in rat brain. J. Neurochem. 46, 14291435.
  • Evans T., Hepler J. R., Masters S. B., Brown J. H., and Harden T. K. (1985) Guanine nucleotide regulation of agonist binding to muscarinic cholinergic receptors. Biochem. J. 232, 751757.
  • Figueiredo J. C., Fisher S. K., and Horowitz M. I. (1986) Modulation of muscarinic and nicotinic cholinergic receptor mediated catecholamine secretion in guinea pig chromaffin cells by phor-bol esters. Fed. Proc. 45, 505.
  • Fisher S. K. (1986) Inositol lipids and signal transduction at CNS muscarinic receptors. Trends Pharmacol. Sci. Supp.l: Subtypes of Muscarinic Receptors II, 6165.
  • Fisher S. K. and Agranoff B. W. (1980) Calcium and the muscarinic synaptosomal phospholipid labeling effect. J. Neurochem. 34, 12311240.
  • Fisher S. K. and Agranoff B. W. (1981) Enhancement of the muscarinic synaptosomal phospholipid labeling effect by the iono-phore A23187. J. Neurochem. 37, 968977.
  • Fisher S. K. and Agranoff B. W. (1985) The biochemical basis and functional significance of enhanced phosphatidate and phos-phoinositide turnover, in Phospholipids in Nervous Tissues (EichbergJ., ed), pp. 241295. John Wiley, New York .
  • Fisher S. K. and Agranoff B. W. (1986) Phosphoinositide turnover in the CNS and in neural-related tissues, in Receptor Biochemistry and Methodology: Receptors and Phosphoinositides (Putney, J. W., ed), pp. 219243. Alan R. Liss, New York .
  • Fisher S. K. and Bartus R. T. (1985) Regional differences in the coupling of muscarinic receptors to inositol phospholipid hydrolysis in guinea pig brain. J. Neurochem. 45, 10851095.
  • Fisher S. K. and Snider R. M. (1986) Receptor occupancy requirements for muscarinic receptor-stimulated phosphoinositide turnover in brain and in neuroblastoma. (Abstr) Soc. Neurosci. Abstr. 12, 491.
  • Fisher S. K., Boast C. A., and Agranoff B. W. (1980) The muscarinic stimulation of phospholipid labeling is independent of its cholinergic input. Brain Res. 189, 284288.
  • Fisher S. K., Frey K. A., and Agranoff B. W. (1981a) Loss of muscarinic receptors and of stimulated phospholipid labeling in ibo-tenate-treated hippocampus. J. Neurosci. 1, 14071413.
  • Fisher S. K., Holz R. W., and Agranoff B. W. (1981b) Muscarinic receptors in chromaffin cell cultures mediate enhanced phospholipid labeling but not catecholamine secretion. J. Neurochem. 37, 491497.
  • Fisher S. K., Klinger P. D., and Agranoff B. W. (1983) Muscarinic agonist binding and phospholipid turnover in brain. J. Biol. Chem. 258, 73587363.
  • Fisher S. K., Figueiredo J. C., and Bartus R. T. (1984) Differential stimulation of inositol phospholipid turnover in brain by analogs of oxotremorine. J. Neurochem. 43, 11711179.
  • Fowler C. J., Magnusson O., Mohammed A. K., Danysz W., and Archer T. (1986) The effect of selective noradrenergic lesions upon the stimulation by noradrenaline of inositol phospholipid breakdown in rat hippocampal miniprisms. Eur. J. Pharmacol. 123, 401407.
  • Gershengorn M. and Paul M. E. (1986) Evidence for tight coupling of receptor occupancy by thyrotropin-releasing hormone to phospholipase C-mediated phosphoinositide hydrolysis in rat pituitary cells: use of chlordiazepoxide as a competitive antagonist. Endocrinology 119, 833839.
  • Gil D. W. and Wolfe B. B. (1985) Pirenzepine distinguishes between muscarinic receptor-mediated phosphoinositide breakdown and inhibition of adenylate cyclase. J. Pharmacol. Exp. Ther. 232, 608616.
  • Gill D. L., Ueda T., Chueh S.-H., and Noel M. W. (1986) Ca2+ release from endoplasmic reticulum is mediated by a guanine nucleotide regulatory mechanism. Nature 320, 461464.
  • Gispen W. H., Leunissen J. L. M., Oestreicher A. B., Verkleij A. J., and Zwiers H. (1985) Presynaptic localization of B-50 phos-phoprotein: the (ACTH)-sensitive protein kinase substrate involved in rat brain polyphosphoinositide metabolism. Brain Res. 328, 381385.
  • Goedert M., Pinnock R. D., Downes C. P., Mantyh P. W., and Em-son P. C. (1984) Neurotensin stimulates inositol phospholipid hydrolysis in rat brain slices. Brain Res. 323, 193197.
  • Goelet P., Castellucci V. F., Schacher S., and Kandel E. R. (1986) The long and the short of long-term memory—a molecular framework. Nature 322, 419422.
  • Gonzales R. A. and Crews F. T. (1984) Characterization of the cholinergic stimulation of phosphoinositide hydrolysis of rat brain slices. J. Neurosci. 4, 31203127.
  • Gonzales R. A. and Crews F. T. (1985) Guanine nucleotides stimulate production of inositol trisphosphate in rat cortical membranes. Biochem. J. 232, 799804.
  • Gonzales R. A., Feldstein J. B., Crews F. T., and Raizada M. K. (1985) Receptor mediated inositide hydrolysis is a neuronal response: comparison of primary neuronal and glial cultures. Brain Res 345, 350355.
  • Goswami S. K. and Gould R. M. (1985) Effect of electrical stimulation on phosphoinositide metabolism in rat sciatic nerve in vivo. J. Neurochem. 44, 941946.
  • Greene D. A. and Lattimer S. A. (1983) Impaired rat sciatic nerve sodium-potassium adenosine triphosphate in acute streptozo-tocin diabetes and its correction by myo-inositol supplementation. J. Clin. Invest. 72, 10581063.
  • Greene D. A. and Lattimer S. A. (1985) Altered nerve myo-inositol metabolism in experimental diabetes and its relationship to nerve function, in Inositol and Phosphoinositides: Metabolism and Biological Regulation (Eichberg, J., and Hauser, G., eds), pp. 563582. Humana Press, Clifton , New Jersey .
  • Greene D. A. and Lattimer S. A. (1986) Protein kinase C agonists acutely normalize decreased ouabain-inhibitable respiration in diabetic rabbit nerve: implications for (Na,K)-ATPase regulation and diabetic complications. Diabetes 35, 242245.
  • Griffin H. D. and Hawthorne J. N. (1978) Calcium-activated hydrolysis of phosphatidyl-myo-inositol 4-phosphate and phos-phatidyl-myo-inositol 4,5-bisphosphate in guinea pig synapto-somes. Biochem. J. 176, 541552.
  • Griffin H. D., Hawthorne J. N., and Sykes M. (1979) A calcium requirement for the phosphatidylinositol response following activation of presynaptic muscarinic receptors. Biochem. Pharmacol. 28, 11431147.
  • Gusovsky F., Hollingsworth E. B., and Daly J. W. (1986) Regulation of phosphatidylinositol turnover in brain synaptoneuro-somes: stimulatory effects of agents that enhance influx of sodium ions. Proc. Natl. Acad. Sci. USA 83, 30033007.
  • Hajra A. K., Fisher S. K., and Agranoff B. W. (1987) Isolation, separation and analysis of phosphoinositides from biological sources, in Neuromethods (Neurochemistry), Vol. 8: Lipids and Related Compounds (Hor-rocksL. A., eds), in press. Humana Press, Clifton , New Jersey .
  • Hallcher L. M. and Sherman W. R. (1980) The effects of lithium ion and other agents on the activity of myo-inositol-1 -phosphatase from bovine brain. J. Biol. Chem. 255, 1089610901.
  • Hanley M. R., Benton H. P., Lightman S. L., Todd K., Bone E. A., Fretten P., Palmer, Sr, Kirk, C. J., and Michell R. H. (1984) A vasopressin-like peptide in the mammalian sympathetic nervous system. Nature 309, 258261.
  • Hansen C. A., Mah S., and Williamson J. R. (1986) Formation and metabolism of inositol 1,3,4,5-tetrakisphosphate in liver. J. Biol. Chem. 261, 81008103.
  • Hauser G. and Parks J. M. (1983) Evidence from phospholipid metabolism changes for muscarinic cholinergic receptors on rat anterior pituitary cells. J. Neurosci. Res. 10, 295302.
  • Hawkins P. T., Stephens L., and Downes C. P. (1986) Rapid formation of inositol 1,3,4,5-tetrakisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands may both result indirectly from receptor-stimulated release of inositol 1,4,5-trisphos-phate from phosphatidylinositol 4,5-bisphosphate. Biochem. J. 238, 507516.
  • Hawthorne J. N. (1986) Does receptor-linked phosphoinositide metabolism provide messengers mobilizing calcium in nervous tissue? Int. Rev. Neurobiol. 28, 241273.
  • Hawthorne J. N. and Kai M. (1969) Metabolism of phosphoinosi-tides, in Handbook of Neurochemistry, Vol. 3 (LajthaA., ed), pp. 491508. Plenum Press, New York .
  • Hawthorne J. N. and Pickard M. R. (1979) Phospholipids in synap-tic function. J. Neurochem. 32, 514.
  • Heacock A. M. and Agranoff B. W. (1982) Protein synthesis and transport in the regenerating goldfish visual system. Neurochem. Res. 7, 771788.
  • Heacock A. M., Fisher S. K., and Agranoff B. W. (1987) Enhanced coupling of neonatal muscarinic receptors in rat brain to phosphoinositide turnover. J. Neurochem. (in press).
  • Higashida H. and Brown D. A. (1986) Two polyphosphatidylinosi-tol metabolites control two K+ currents in a neuronal cell. Na-ture 323, 333335.
  • Hirasawa K. and Nishizuka Y. (1985) Phosphatidylinositol turnover in receptor mechanism and signal transduction. Annu. Rev. Pharmacol. Toxicol. 25, 147170.
  • Hokin L. E. (1965) Autoradiographic localization of the acetylcho-line-stimulated synthesis of phosphatidylinositol in the superior cervical ganglion. Proc. Natl. Acad. Sci. USA 53, 13691376.
  • Hokin L. E. (1966) Effects of acetylcholine on the incorporation of 32P into various phospholipids in slices of normal and dener-vated superior cervical ganglia of the cat. J. Neurochem. 13, 179184.
  • Hokin L. E. (1985) Receptors and phosphoinositide-generated second messengers. Annu. Rev. Biochem. 54, 205235.
  • Hokin L. E. and Hokin M. R. (1955) Effects of acetylcholine on the turnover of phosphoryl units in individual phospholipids of pancreas slices and brain cortex slices. Biochim. Biophys. Acta 18, 102110.
  • Hokin M. R. and Hokin L. E. (1959) The synthesis of phosphatidic acid from diglyceride and adenosine triphosphate in extracts of brain microsomes. J. Biol. Chem. 234, 13811386.
  • Hokin M. R. and Hokin L. E. (1964) Interconversions of phosphatidylinositol and phosphatidic acid involved in the response to acetylcholine in the salt gland, in Metabolism and Physiological Significance of Lipids (Dawson, R. M. C. and Rhodes, D. N., eds), pp. 423434. John Wiley and Sons, New York .
  • Hollingsworth E. B. and Daly J. W. (1985) Accumulation of inositol phosphates and cyclic AMP in guinea-pig cerebral cortical preparations. Effects of norepinephrine, histamine, carbamyl-choline and 2-chloroadenosine. Biochim. Biophys. Acta 847, 207216.
  • Holmsen H., Nilsen A. O., and Rongved S. (1985) Energy requirements for stimulus-response coupling. Adv. Exp. Med. Biol. 192, 215233.
  • Horwitz J., Tsymbalov S., and Perlman R. L. (1984) Muscarine stimulates the hydrolysis of inositol-containing phospholipids in the superior cervical ganglion. J. Pharmacol. Exp. Ther. 233, 235241.
  • Hunter J. C., Goedert M., and Pinnock R. D. (1985) Mammalian tachykinin-induced hydrolysis of inositol phospholipids in rat brain slices. Biochem. Biophys. Res. Commun. 127, 616622.
  • Irvine R. F., Letcher A. J., Lander D. J., and Downes C. P. (1984).Inositol trisphosphates in carbachol-stimulated rat parotid glands. Biochem. J. 223, 237243.
  • Irvine R. F., Letcher A. J., Heslop J. P., and Berridge M. J. (1986) The inositol tris/tetrakis phosphate pathway—demonstration of inositol (l,4,5)trisphosphate-3-kinase activity in animal tissues. Nature 320, 631634.
  • Jacobson M. D., Wusteman M., and Downes C. P. (1985) Muscarinic receptors and hydrolysis of inositol phospholipids in rat cerebral cortex and parotid gland. J. Neurochem. 44, 465472.
  • Janowsky A., Labarca R., and Paul S. M. (1984) Noradrenergic de-nervation increases α1-adrenoreceptor-mediated inositol-phosphate accumulation in the hippocampus. Eur. J. Pharmacol. 102, 193194.
  • Johnson R. D. and Minneman K. P. (1985) α-Adrenergic receptors and stimulation of [3H]inositol metabolism in rat brain: regional distribution and parallel inactivation. Brain Res. 341, 715.
  • Jolles J., Schrama L. H., and Gispen W. H. (1981) Calcium-dependent turnover of brain polyphosphoinositides in vitro after pre-labelling in vivo. Biochim. Biophys. Acta 666, 9098.
  • Joseph S. K. (1985) Receptor-stimulated phosphoinositide metabolism: a role for GTP-binding proteins? Trends Biochem. Sci. 10, 297298.
  • Kai M., White G. L., and Hawthorne J. N. (1966) The phosphatidylinositol kinase of rat brain. Biochem. J. 101, 328337.
  • Kai M., Salway J. G., and Hawthorne J. N. (1968) The diphospho-inositide kinase of rat brain. Biochem. J. 106, 791801.
  • Kanba S., Kanba K. S., and Richelson E. (1986) The protein kinase C activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), inhibits muscarinic (M1) receptor-mediated inositol phosphate release and cyclic GMP formation in murine neuroblastoma cells (clone N1E-115). Eur. J. Pharmacol. 125, 155156.
  • Kao L. S. and Schneider A. S. (1985) Muscarinic receptors on bovine chromaffin cells mediate a rise in cytosolic calcium that is independent of extracellular calcium. J. Biol. Chem. 260, 20192022.
  • Katz F., Ellis L., and Pfenninger K. H. (1985) Nerve growth cones isolated from fetal rat brain. III. Calcium-dependent protein phosphorylation. J. Neurosci. 5, 14021414.
  • Kemp J. A. and Downes C. P. (1986) Noradrenaline-stimulated inositol phospholipid breakdown in rat dorsal lateral genicu-late nucleus neurones. Brain Res. 371, 314318.
  • Kemp P., Hubscher G., and Hawthorne J. N. (1959) A liver phos-pholipase hydrolysing phosphoinositides. Biochim. Biophys. Acta 31, 585586.
  • Kendall D. A. and Nahorski S. R. (1984) Inositol phospholipid hydrolysis in rat cerebral cortical slices: II. Calcium requirement. J. Neurochem. 42, 13881394.
  • Kendall D. A. and Nahorski S. R. (1985a) Dihydropyridine calcium channel activators and antagonists influence depolarization-evoked inositol phospholipid hydrolysis in brain. Eur. J. Phar-macol. 115, 3136.
  • Kendall D. A. and Nahorski S. R. (1985b) 5-Hydroxytryptamine-stimulated inositol phospholipid hydrolysis in rat cerebral cortex slices: pharmacological characterization and effects of anti-depressants. J. Pharmacol. Exp. Ther. 233, 473479.
  • Kendall D. A., Brown E., and Nahorski S. R. (1985) α1-Adrenocep-tor-mediated inositol phospholipid hydrolysis in rat cerebral cortex: relationship between receptor occupancy and response and effects of denervation. Eur. J. Pharmacol. 114, 4152.
  • Labarca R., Janowsky A., Patel J., and Paul S. M. (1984) Phorbol esters inhibit agonist-induced [3H]inositol-1-phosphate accumulation in rat hippocampal slices. Biochem. Biophys. Res. Commun. 123, 703709.
  • Lakshmanan J. (1978) Nerve growth factor induced phosphatidylinositol turnover effect of 6-hydroxydopamine treatment. FEBS Lett. 92, 159162.
  • Lakshmanan J. (1979) Post-synaptic PI-effect of nerve growth factor in rat superior cervical ganglia. J. Neurochem. 32, 15991601.
  • Lazareno S., Kendall D. A., and Nahorski S. R. (1985) Pirenzepine indicates heterogeneity of muscarinic receptors linked to cerebral inositol phospholipid metabolism. Neuropharmacology 24, 593595.
  • Leeb-Lundberg L. M. F., Cotecchia S., Lomasney J. W., De Ber-nadis J. F., Lefkowitz R. J., and Caron M. G. (1985) Phorbol esters promote α1-adrenergic receptor phosphorylation and receptor uncoupling from inositol phospholipid metabolism. Proc. Natl. Acad. Sci. USA 82, 56515655.
  • Litosch I., Wallis C., and Fain J. N. (1985) 5-Hydroxytryptamine stimulates inositol phosphate production in a cell free system from blowfly salivary glands: evidence for a role of GTP in coupling receptor activation to phosphoinositide breakdown. J. Biol. Chem. 260, 54645471.
  • Low M. G. and Finean J. B. (1978) Specific release of plasma membrane enzymes by a phosphatidylinositol-specific phospholi-pase C. Biochim. Biophys. Acta 508, 565570.
  • Low M. G. and Kincade P. W. (1985) Phosphatidylinositol is the membrane-anchoring domain of the Thy-1 glycoprotein. Nature 318, 6264.
  • Low M. G. and Zilversmit D. B. (1980) Role of phosphatidylinositol in attachment of alkaline phosphatase to membranes. Biochemistry 19, 39133918.
  • Low M. G., Ferguson M. A. J., Futerman A. H., and Silman I. (1986) Covalently attached phosphoinositol as a hydrophobic anchor for membrane proteins. TIBS 11, 212214.
  • Malenka R. C., Madison D. V., Andrade R., and Nicoll R. A. (1986) Phorbol esters mimic some cholinergic actions in hippocampal pyramidal neurons. J. Neurosci. 6, 475480.
  • Mantyh P. W., Pinnock R. D., Downes C. P., Goedert M., and Hunt S. P. (1984) Correlation between inositol phospholipid hydrolysis and substance P receptors in rat CNS. Nature 309, 795797.
  • Martin T. F. J. (1983) Thyrotropin releasing hormone rapidly activates the phosphodiester hydrolysis of polyphosphoinositides in GH3 pituitary cells. J. Biol. Chem. 258, 1481614822.
  • Martin T. F. J., Lucas D. O., Bajjalieh S. M., and Kowalchyk J. A. (1986) Thyrotropin-releasing hormone activates a Ca2+-depen-dent polyphosphoinositide phosphodiesterase in permeable GH3 cells. GTPγS potentiation by a cholera and pertussis toxin-insensitive mechanism. J. Biol. Chem. 261, 29182927.
  • Masters S. B., Harden T. K., and Brown J. H. (1984) Relationships between phosphoinositide and calcium responses to muscarinic agonists in 1321N1 astrocytoma cells. Mol. Pharmacol. 26, 149155.
  • Mcllwain H. (1985) In the beginning: to celebrate 20 years of the International Society for Neurochemistry (ISN). J. Neuro-chem. 45, 110.
  • McKinney M., Stenstrom S., and Richelson E. (1985) Muscarinic responses and binding in a murine neuroblastoma clone (N1E-115). Mediation of separate responses by high affinity and low affinity agonist-receptor conformations. Mol. Pharmacol. 27, 223235.
  • Meiri K. F., Pfenninger K. H., and Willard M. B. (1986) Growth-associated protein, GAP-43, a polypeptide that is induced when neurons extend axons, is a component of growth cones and corresponds to pp46, a major polypeptide of a subcellular fraction enriched in growth cones. Proc. Natl. Acad. Sci. USA 83, 35373541.
  • Minneman K. P. and Johnson R. D. (1984) Characterization of alpha-1 adrenergic receptors linked to [3H]inositol metabolism in rat cerebral cortex. J. Pharmacol. Exp. Ther. 230, 317323.
  • Minneman K. P. and Johnson R. D. (1986) α1-Adrenergic receptors linked to inositol phosphate and cyclic AMP accumulation in rat brain (Abstr), in Abstracts of the Sixth European Society of Neurochemistry Meeting, p. 103. European Society of Neurochemistry, Prague .
  • Mohd Adnan, N. A. and Hawthorne J. N. (1981) Phosphatidylinositol labeling in response to activation of muscarinic receptors - in bovine adrenal medulla. J. Neurochem. 36, 18581860.
  • Molina, Y Vedia L. M. and Lapetina E. G. (1986) Phorbol 12, 13-dibutyrate and 1-oleyl-2-acetyldiacyl-glycerol stimulate inositol trisphosphate dephosphorylation in human platelets. J. Biol. Chem. 261, 1049310495.
  • Mori T., Taki Y., Yu B., Takabashi J., Nishizuka Y., and Fujikura T. (1982) Specificity of fatty acyl moieties of diacylglycerol for the activation of calcium-activated, phospholipid dependent protein kinase. J. Biochem. (Tokyo) 91, 427431.
  • Nahorski S. R., Kendall D. A., and Batty I. (1986) Receptors and phosphoinositide metabolism in the central nervous system. Biochem. Pharmacol. 35, 24472453.
  • Nakahata N., Martin M. W., Hughes A. R., Hepler J. R., and Harden T. K. (1986) H1-histamine receptors on human astrocytoma cells. Mol. Pharmacol. 29, 188195.
  • Nelson R. B. and Routtenberg A. (1985) Characterization of protein Fl (47 kDa, 4.5 pI): a kinase C substrate directly related to neural plasticity. Exp. Neurol. 89, 213224.
  • Nicchitta C. V. and Williamson J. R. (1986) Cyclic nucleotide regulation of inositol lipid metabolism in rat cerebral cortex. Fed. Proc. 45, 1827.
  • Nicoletti F., Meek J. L., Chuang D. M., Iodarola M., Roth B. L., and Costa E. (1985) Ibotenic acid stimulates inositol phospholipid turnover in rat hippocampal slices: an effect mediated by “APB-sensitive” receptors. Fed. Proc. 44, Abstr 480.
  • Nicoletti F., Meek J. L., Iadarola M. J., Chuang D. M., Roth B. L., and Costa E. (1986a) Coupling of inositol phospholipid metabolism with excitatory amino acid recognition sites in rat hippocampus. J. Neurochem. 46, 4046.
  • Nicoletti F., Iadarola M. J., Wroblewski J. T., and Costa E. (1986b) Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: developmental changes and interaction with α1-adrenoceptors. Proc. Natl. Acad. Sci. US. 83, 19311935.
  • Nicoletti F., Wroblewski J. T., Novelli A., Alho H., Guidotti A., and Costa E. (1986c) The activation of inositol phospholipid metabolism as a signal-transducing system for excitatory amino acids in primary cultures of cerebellar granule cells. J. Neurosci. 6, 19051911.
  • Nishizuka Y. (1984) Turnover of inositol phospholipids and signal transduction. Science 225, 13651370.
  • Nishizuka Y. (1986) Studies and perspectives of protein kinase C. Science 233, 305312.
  • Ohsako S. and Deguchi T. (1983) Phosphatidic acid mimicks the muscarinic actions of acetylcholine in cultured bovine chro-maffin cells. FEBS Lett. 152, 6266.
  • Olianas M. C., Onali, P., Neff, N. H., and Costa E. (1983) Adenylate cyclase activity of synaptic membranes from rat striatum. Inhibition by muscarinic receptor agonists. Mol. Pharmacol. 23, 393398.
  • Orellana S. A., Solski P. A., and Brown J. H. (1985) Phorbol ester inhibits phosphoinositide hydrolysis and calcium mobilization in cultured astrocytoma cells. J. Biol. Chem. 260, 52365239.
  • Oron Y., Dascal N., Natller E., and Lupu M. (1985) Inositol 1,4,5-trisphosphate mimics muscarinic responses in Xenopus oo-cytes. Nature 313, 141143.
  • Osugi T., Uchida S., Imaizumi T., and Yoshida H. (1986) Bradyki-nin-induced intracellular Ca2+ elevation in neuroblastoma × glioma hybrid NG108–15 cells: relationship to the action of inositol phospholipids metabolites. Brain Res. 379, 8489.
  • Palmano-K P., Whiting P. H., and Hawthorne J. N. (1977) Free and lipid myoinositol in tissues from rats with acute and less severe streptozotocin-induced diabetes. Biochem. J. 167, 229235.
  • Pearce B., Cambray-Deakin M., Morrow C., Grimble J., and Murphy S. (1985) Activation of muscarinic and of α1-adrenergic receptors on astrocytes results in the accumulation of inositol phosphates. J. Neurochem. 45, 15341540.
  • Peroutka S. J. and Snyder S. H. (1980) Long-term antidepressant treatment lowers spiroperidol labelled serotonin receptor binding. Science 210, 8890.
  • Petzold G. L. and Agranoff B. W. (1965) Studies on the formation of CDP-diglyceride. Fed. Proc. 24, 476.
  • Petzold G. L. and Agranoff B. W. (1967) The biosynthesis of cytidine diphosphate diglyceride by embryonic chick brain. J. Biol. Chem. 242, 11871191.
  • Pizer F. L. and Ballou C. E. (1959) Studies on myo-inositol phosphates of natural origin. J. Am. Chem. Soc. 81, 915921.
  • Prentki M., Biden T. J., Janjic D., Irvine R. F., Berridge M. J., and Wollheim C. B. (1984) Rapid mobilization of Ca2+ from rat insulinoma microsomes by inositol-1,4,5-trisphosphate. Nature 309, 562564.
  • Renshaw P. F., Joseph N. E., and Leigh, J. S. (1986) Chronic dietary lithium induces increased levels of myo-inositol-1-phosphatase activity in rat cerebral cortex homogenates. Brain Res. 380, 401404.
  • Richelson E. and Nelson A. (1984a) Antagonism by antidepressants of neurotransmitter receptors of normal human brain in vitro. J. Pharmacol. Exp. Ther. 230, 94102.
  • Richelson E. and Nelson A. (1984b) Antagonism by neuroleptics of neurotransmitter receptors of normal human brain in vitro. Eur. J. Pharmacol. 103, 197204.
  • Rodbell M. (1985) Programmable messengers: a new theory of hormone action. Trends Biochem. Sci. 11, 461464.
  • Role L. W. and Perlman R. L. (1983) Both nicotinic and muscarinic receptors mediate catecholamine secretion by isolated guinea-pig chromaffin cells. Neuroscience 10, 979985.
  • Ross T. S. and Majerus P. W. (1986) Isolation of d-myo-inositol 1:2-cyclic phosphate 2-inositolphosphohydrolase from human placenta. J. Biol. Chem. 261, 1111911123.
  • Saltiel A. R. and Cuatrecasas P. (1986) Insulin stimulates the generation from hepatic plasma membranes of modulators derived from an inositol glycolipid. Proc. Natl. Acad. Sci. USA 83, 57935797.
  • Saltiel A. R., Fox J. A., Sherline P., and Cuatrecasas P. (1986) Insulin-stimulated hydrolysis of a novel glycolipid generates modulators of cAMP phosphodiesterase. Science 233, 967972.
  • Schmidt S. Y. (1983a) Light- and cytidine-dependent phosphatidyl-inositol synthesis in photoreceptor cells of the rat. J. Cell Biol. 97, 832837.
  • Schmidt S. Y. (1983b) Phosphatidylinositol synthesis and phos-phorylation are enhanced by light in rat retinas. J. Biol. Chem. 258, 68636868.
  • Schoepp D. D., Knepper S. M., and Rutledge C. O. (1984) Norepi-nephrine stimulation of phosphoinositide hydrolysis in rat cerebral cortex is associated with the alpha-adrenoceptor. J. Neurochem. 43, 17581761.
  • Sherman W. R., Stewart M. A., Jurien M. M., and Goodwin S. L. (1968) The measurement of myo-inositol, myoinosose-2 and scyllo-inositol in mammalian tissues. Biochim. Biophys. Acta 158, 197205.
  • Siman R. G. and Klein W. L. (1981) Specificity of muscarinic ace-tylcholine receptor regulation by receptor activity. J. Neurochem. 37, 10991108.
  • Simmonds S. H. and Strange P. G. (1985) Inhibition of inositol phospholipid breakdown by D2 dopamine receptors in dissociated bovine anterior pituitary cells. Neurosci. Lett. 60, 267272.
  • Skene J. H. P. and Willard M. (1981) Changes in axonally transported proteins during axon regeneration in toad retinal ganglion cells. J. Cell. Biol. 89, 8695.
  • Sladeczek F., Pin J.-P., Recasens M., Bockaert J., and Weiss S. (1985) Glutamate stimulates inositol phosphate formation in striatal neurons. Nature 317, 717719.
  • Smith T. L. and Yamamura H. I. (1985) Carbachol stimulation of phosphatidic acid synthesis: competitive inhibition by piren-zepine in synaptosomes from rat cerebral cortex. Biochem. Biophys. Res. Commun. 130, 282285.
  • Snider R. M., Kyes S. A., Seguin E. B., and Agranoff B. W. (1984) Inositol lipid labeling produced by muscarinic, histamine H, and thrombin in stimulation in neuroblastoma cells. (Abstr) Soc. Neurosci. Abstr. 10, 276.
  • Snider R. M., Forray C., Pfenning M., and Richelson E. (1986) Neurotensin stimulates inositol phospholipid metabolism and calcium mobilization in murine neuroblastoma clone N1E-115. J. Neurochem. 47, 12141218.
  • Snider R. M., Fisher S. K., and Agranoff B. W. (1987) Inositide-linked second messengers in the central nervous system, in Psychopharmacology: The Third Generation of Progress (SimpsonH. H., eds), in press. Raven Press, New York .
  • Spat A., Bradford P. G., McKinney J. S., Rubin R. P., and Putney, J. W. (1986a) A saturable receptor for 32P-inositol-1,4,5-trisphosphate in hepatocytes and neutrophils. Natur. 319, 514516.
  • Spat A., Fabiato A., and Rubin R. P. (1986b) Binding of inositol trisphosphate by a liver microsomal fraction. Biochem. J. 233, 929932.
  • Spector R. and Lorenzo A. V. (1975) myo-Inositol transport in the central nervous system. Am. J. Physiol. 228, 15101518.
  • Stephens L. R. and Logan S. D. (1986) Arginine-vasopressin stimulates inositol phospholipid metabqlism in rat hippocampus. J. Neurochem. 46, 649651.
  • Stoehr S. J., Smolen J. E., Holz R. W., and Agranoff B. W. (1986) Inositol trisphosphate mobilizes intracellular calcium in per-meabilized adrenal chromaffin cells. J. Neurochem. 46, 637640.
  • Streb H., Irvine R. F., Berridge M. J., and Schulz I. (1983) Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306, 6769.
  • Subramanian N., Whitmore W. L., Seidler F. J., and Slotkin T. A. (1980) Histamine stimulates brain phospholipid turnover through a direct H-1 receptor-mediated mechanism. Life Sci. 27, 13151319.
  • Thomas A. P., Alexander J., and Williamson J. R. (1984) Relationship between inositol polyphosphate production and the increase of cytosolic free Ca2+ induced by vasopressin in isolated hepatocytes. J. Biol. Chem. 259, 55745584.
  • Tower D. B. (1987) The American Society for Neurochemistry (ASN): antecedents, founding, and early years. J. Neurochem. 48, 313326.
  • Traynor A. E., Schubert D., and Allen W. R. (1982) Alterations of lipid metabolism in response to nerve growth factors. J. Neurochem. 39, 16771683.
  • Van Dongen C., Zwiers H., Oestreicher A. B., and Gispen W. H. (1985) ACTH, phosphoprotein B-50, and polyphosphoinosi-tide metabolism in rat brain membranes, in Phospholipids in the Nervous System, Vol. 2: Physiological Roles (Porcellati, G., eds), pp. 4959. Raven Press, New York .
  • Van Rooijen L. A. A., Seguin E. B., and Agranoff B. W. (1983) Phosphodiesteratic breakdown of endogenous polyphospho-inositides in nerve ending membranes. Biochem. Biophys. Res. Commun. 112, 919926.
  • Van Rooijen L. A. A., Hajra A. K., and Agranoff B. W. (1985) Tetraenoic species are conserved in muscarinically enhanced inositide turnover. J. Neurochem. 44, 540543.
  • Vicentini L. M., Ambrosini A., Di Virgilio F., Pozzan T., and Mel-dolesi J. (1985) Muscarinic receptor-induced phosphoinositide hydrolysis at resting cytosolic Ca2+ concentration in PC12 cells. J. Cell Biol. 100, 13301333.
  • Vickroy T., Watson M., Yamamura H. I., and Roeske W. R. (1984) Agonist binding to multiple muscarinic receptors. Fed. Proc. 43, 27852790.
  • Watson M., Vickroy T. W., Roeske W. R., and Yamamura H. I. (1985) Functional and biochemical basis for multiple muscarinic acetylcholine receptors. Prog. Neuropsychopharmacol. Biol. Psychiatry 9, 569574.
  • Watson S. P. and Downes C. P. (1983) Substance P induced hydrolysis of inositol phospholipids in guinea-pig ileum and rat hypo-thalamus. Eur. J. Pharmacol. 93, 245253.
  • Whiting P. H., Palmano K. P., and Hawthorne J. N. (1977) Enzymes of myo-inositol and inositol lipid metabolism in rats with streptozotocin-induced diabetes. Biochem. J. 179, 549553.
  • Williamson J. R. (1986) Role of inositol lipid breakdown in the generation of intracellular signals. Hypertension 8 (Suppl II), 140156.
  • Wilson D. B., Bross T. E., Hofmann S. L., and Majerus P. W. (1984) Hydrolysis of polyphosphoinositides by purified sheep seminal vesicle phospholipase C enzymes. J. Biol. Chem. 259, 1171811724.
  • Wilson D. B., Connolly T. M., Bross T. E., Majerus P. W., Sherman W. R., Tyler A., Rubin L. J., and Brown J. E. (1985a) Isolation and characterization of the inositol cyclic phosphate products of polyphosphoinositide cleavage by phospholipase C. Physiological effects in permeabilized platelets and Limulus photore-ceptor cells. J. Biol. Chem. 260, 1349613501.
  • Wilson D. B., Neufeld E. J., and Majerus P. W. (1985b) Phospho-inositide interconversion in thrombin-stimulated human platelets. J. Biol. Chem. 260, 10461051.
  • Woelk H., Kanig K., and Peiler-Ichikawa K. (1974) Incorporation of 32P into the phospholipids of neuronal and glial cell enriched fractions isolated from rabbit cerebral cortex. J. Neurochem. 23, 10571063.
  • Yang J. C., Chang P. C., Fujitaki J. M., Chiu K. C., and Smith R. A. (1986) Covalent linkage of phospholipid to myelin basic protein: identification of phosphatidylinositol bisphosphate as the attached phospholipid. Biochemistry 25, 26772681.
  • Yano K., Higashida H., Inoue R., and Nozawa Y. (1984) Bradyki-nin-induced rapid breakdown of phosphatidylinositol 4,5-bis-phosphate in neuroblastoma × glioma hybrid NG 108–15 cells. J. Biol. Chem. 259, 1020110207.
  • Young P. W., Bicknell R. J., and Schofield J. G. (1979) Acetylcho-line stimulates growth hormone secretion, phosphatidylinositol labelling, 45Ca2+ efflux and cyclic GMP accumulation in bovine anterior pituitary cells. J. Endocrinol. 80, 203213.