• CDP-diacylglycerol;
  • Inositol;
  • Lithium;
  • Muscarinic;
  • Neuroblastoma;
  • Phosphoinositides

Abstract: The psychotherapeutic action of Li+ in brain has been proposed to result from the depletion of cellular inositol secondary to its block of inositol monophosphatase. This action is thought to slow phosphoinositide resynthesis, thereby attenuating stimulated phosphoinositidase-mediated signal transduction in affected cells. In the present study, the effect of Li+ on muscarinic receptor–stimulated formation of the immediate precursor of phosphatidylinositol, CDP-diacylglycerol (CDP-DAG), has been examined in human SK-N-SH neuroblastoma cells that have been cultured under conditions that alter the cellular content of myo-inositol. Resting neuroblastoma cells, like brain cells in vivo, were found to concentrate inositol from the culture medium, achieving an intracellular level of 60.0 ± 4 nmol/mg of protein. The addition of carbachol to [3H]cytidine-prelabeled cells elicited a four- to fivefold increase in the accumulation of labeled CDP-DAG. This stimulated formation of [3H]CDP-DAG was completely blocked by the addition of 10 μM atropine, was not dependent on the presence of Li+, nor was it affected by co-incubation with myo-inositol. This result was in sharp contrast to findings in rat brain slices, in which carbachol-stimulated formation of [3H]CDP-DAG was potentiated ∼ 10-fold by Li+ and substantially reduced by coincubation with inositol. The formation of [3H]CDP-DAG in labeled SK-N-SH cells by carbachol was both concentration and time dependent. The order of efficacy of muscarinic ligands in stimulating [3H]-CDP-DAG accumulation paralleled that established in these cells for inositol phosphate accumulation, i.e., carbachol ≥ oxotremorine-M > bethanecol ≥ arecoline > oxotremorine > pilocarpine. Extended culture of the SK-N-SH cells in an inositol-free chemically defined growth medium progressively reduced the intracellular inositol content to <5 nmol/mg of protein, a level comparable with that seen in cortical slices. In these inositol-depleted cells, Li+ potentiated carbachol-stimulated [3H]CDP-DAG formation, and this effect was completely reversed by coincubation with inositol (EC50 0.2 mM). The present study thus demonstrates, in the same cultured cell line, the effects of normal and reduced intracellular inositol levels on the ability of Li+ to attenuate phosphoinositide resynthesis, as inferred from [3H]CDP-DAG accumulation. The results indicate that Li+ can lead to a slowing of stimulated phosphoinositide turnover in neuroblastoma cells, provided that the intracellular inositol content has been significantly reduced.