SEARCH

SEARCH BY CITATION

References

  • Arai A., Kessler M., Ambros-Ingerson J., Quan A., Yigiter E., Rogers G. and Lynch G. (1996a) Effects of a centrally active benzoylpyrrolidine drug on AMPA receptor kinetics. Neuroscience 75, 573585.DOI: 10.1016/0306-4522(96)00263-1
  • Arai A., Kessler M., Rogers G. and Lynch G. (1996b) Effects of a memory-enhancing drug on dl-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor currents and synaptic transmission in hippocampus. J. Pharmacol. Exp. Ther. 278, 627638.
  • Badiani A., Anagnostaras S. G. and Robinson T. E. (1995a) The development of sensitization to the psychomotor stimulant effects of amphetamine is enhanced in a novel environment. Psychopharmacology (Berl.) 117, 443452.
  • Badiani A., Browman K. E. and Robinson T. E. (1995b) Influence of novel versus home environments on sensitization to the psychomotor stimulant effects of cocaine and amphetamine. Brain Res. 674, 291298.
  • Badiani A., Oates M. M., Day H. E., Watson S. J., Akil H. and Robinson T. E. (1998) Amphetamine-induced behavior, dopamine release, and c-fos mRNA expression: modulation by environmental novelty. J. Neurosci. 18, 1057910593.
  • Badiani A., Oates M. M., Day H. E., Watson S. J., Akil H. and Robinson T. E. (1999) Environmental modulation of amphetamine-induced c-fos expression in D1 versus D2 striatal neurons. Behav. Brain Res. 103, 203209.
  • Beneyto M. and Meador-Woodruff J. H. (2004) Expression of transcripts encoding AMPA receptor subunits and associated postsynaptic proteins in the macaque brain. J. Comp. Neurol. 468, 530554.
  • Berke J. D., Paletzki R. F., Aronson G. J., Hyman S. E. and Gerfen C. R. (1998) A complex program of striatal gene expression induced by dopaminergic stimulation. J. Neurosci. 18, 53015310.
  • Berretta S., Robertson H. A. and Graybiel A. M. (1992) Dopamine and glutamate agonists stimulate neuron-specific expression of Fos-like protein in the striatum. J. Neurophysiol. 68, 767777.
  • Berretta S., Parthasarathy H. B. and Graybiel A. M. (1997) Local release of GABAergic inhibition in the motor cortex induces immediate-early gene expression in indirect pathway neurons of the striatum. J. Neurosci. 17, 47524763.
  • Berretta S., Sachs Z. and Graybiel A. M. (1999) Cortically driven Fos induction in the striatum is amplified by local dopamine D2-class receptor blockade. Eur J. Neurosci. 11, 43094319.
  • Brown T. H., Chapman P. F., Kairiss E. W. and Keenan C. L. (1988) Long-term synaptic potentiation. Science 242, 724728.
  • Buller A. L., Larson H. C., Schneider B. E., Beaton J. A., Morrisett R. A. and Monaghan D. T. (1994) The molecular basis of NMDA receptor subtypes: native receptor diversity is predicted by subunit composition. J. Neurosci. 14, 54715484.
  • Cador M., Bjijou Y., Cailhol S. and Stinus L. (1999) d-Amphetamine-induced behavioral sensitization: implication of a glutamatergic medial prefrontal cortex–ventral tegmental area innervation. Neuroscience 94, 705721.
  • Cenci M. A. and Bjorklund A. (1993) Transection of corticostriatal afferents reduces amphetamine- and apomorphine-induced striatal Fos expression and turning behaviour in unilaterally 6-hydroxydopamine-lesioned rats. Eur. J. Neurosci. 5, 10621070.
  • Cenci M. A. and Bjorklund A. (1994) Transection of corticostriatal afferents abolishes the hyperexpression of Fos and counteracts the development of rotational overcompensation induced by intrastriatal dopamine-rich grafts when challenged with amphetamine. Brain Res. 665, 167174.
  • Cenci M. A., Kalen P., Mandel R. J., Wictorin K. and Bjorklund A. (1992) Dopaminergic transplants normalize amphetamine- and apomorphine-induced Fos expression in the 6-hydroxydopamine-lesioned striatum. Neuroscience 46, 943957.
  • Chiasson B. J., Hong M. G. and Robertson H. A. (1997) Putative roles for the inducible transcription factor c-fos in the central nervous system: studies with antisense oligonucleotides. Neurochem. Int. 31, 459475.
  • Cole D. G., Kobierski L. A., Konradi C. and Hyman S. E. (1994) 6-Hydroxydopamine lesions of rat substantia nigra up-regulate dopamine-induced phosphorylation of the cAMP-response element-binding protein in striatal neurons. Proc. Natl Acad. Sci. USA 91, 96319635.
  • Crombag H. S., Badiani A. and Robinson T. E. (1996) Signalled versus unsignalled intravenous amphetamine: large differences in the acute psychomotor response and sensitization. Brain Res. 722, 227231.
  • Curran E. J. and Watson S. J. Jr (1995) Dopamine receptor mRNA expression patterns by opioid peptide cells in the nucleus accumbens of the rat: a double in situ hybridization study. J. Comp. Neurol. 361, 5776.
  • Dragunow M., Logan B. and Laverty R. (1991) 3,4-Methylenedioxymethamphetamine induces Fos-like proteins in rat basal ganglia: reversal with MK 801. Eur. J. Pharmacol. 206, 255258.
  • English J. D. and Sweatt J. D. (1996) Activation of p42 mitogen-activated protein kinase in hippocampal long term potentiation. J. Biol. Chem. 271, 2432924332.DOI: 10.1074/jbc.271.40.24329
  • English J. D. and Sweatt J. D. (1997) A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J. Biol. Chem. 272, 1910319106.DOI: 10.1074/jbc.272.31.19103
  • Ferguson S. M., Norton C. S., Watson S. J., Akil H. and Robinson T. E. (2003) Amphetamine-evoked c-fos mRNA expression in the caudate–putamen: the effects of DA and NMDA receptor antagonists vary as a function of neuronal phenotype and environmental context. J. Neurochem. 86, 3344.DOI: 10.1046/j.1471-4159.2003.01815.x
  • Fiore R. S., Murphy T. H., Sanghera J. S., Pelech S. L. and Baraban J. M. (1993) Activation of p42 mitogen-activated protein kinase by glutamate receptor stimulation in rat primary cortical cultures. J. Neurochem. 61, 16261633.
  • Gerfen C. R. (1992) The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci. 15, 133139.DOI: 10.1016/0166-2236(92)90355-C
  • Gerfen C. R., Miyachi S., Paletzki R. and Brown P. (2002) D1 dopamine receptor supersensitivity in the dopamine-depleted striatum results from a switch in the regulation of ERK1/2/MAP kinase. J. Neurosci. 22, 50425054.
  • Girault J. A., Barbeito L., Spampinato U., Gozlan H., Glowinski J. and Besson M. J. (1986) In vivo release of endogenous amino acids from the rat striatum: further evidence for a role of glutamate and aspartate in corticostriatal neurotransmission. J. Neurochem. 47, 98106.
  • Glowinski J., Cheramy A., Romo R. and Barbeito L. (1988) Presynaptic regulation of dopaminergic transmission in the striatum. Cell. Mol. Neurobiol. 8, 717.
  • Goldin M. and Segal M. (2003) Protein kinase C and ERK involvement in dendritic spine plasticity in cultured rodent hippocampal neurons. Eur. J. Neurosci. 17, 25292539.
  • Graybiel A. M., Moratalla R. and Robertson H. A. (1990) Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum. Proc. Natl Acad. Sci. USA 87, 69126916.
  • Harlan R. E. and Garcia M. M. (1998) Drugs of abuse and immediate-early genes in the forebrain. Mol. Neurobiol. 16, 221267.
  • Hess U.S.,Whalen S. P., Sandoval L. M., Lynch G. and Gall C. M. (2003) Ampakines reduce methamphetamine-driven rotation and activate neocortex in a regionally selective fashion. Neuroscience 121, 509521.DOI: 10.1016/S0306-4522(03)00423-8
  • Hyman S. E. and Malenka R. C. (2001) Addiction and the brain: the neurobiology of compulsion and its persistence. Nat. Rev. Neurosci. 2, 695703.DOI: 10.1038/35094560
  • Jaber M., Cador M., Dumartin B., Normand E., Stinus L. and Bloch B. (1995) Acute and chronic amphetamine treatments differently regulate neuropeptide messenger RNA levels and Fos immunoreactivity in rat striatal neurons. Neuroscience 65, 10411050.DOI: 10.1016/0306-4522(94)00537-F
  • Johansson B., Lindstrom K. and Fredholm B. B. (1994) Differences in the regional and cellular localization of c-fos messenger RNA induced by amphetamine, cocaine and caffeine in the rat. Neuroscience 59, 837849.DOI: 10.1016/0306-4522(94)90288-7
  • Kayadjanian N., Heavens R. P., Besson M. J. and Sirinathsinghji D. J. (1996) Striatal NMDAR2B mRNA expression after bilateral cortical and unilateral nigral deafferentation. Neuroreport 7, 713716.
  • Konradi C., Cole R. L., Heckers S. and Hyman S. E. (1994) Amphetamine regulates gene expression in rat striatum via transcription factor CREB. J. Neurosci. 14, 56235634.
  • Konradi C., Leveque J. C. and Hyman S. E. (1996) Amphetamine and dopamine-induced immediate early gene expression in striatal neurons depends on postsynaptic NMDA receptors and calcium. J. Neurosci. 16, 42314239.
  • LaHoste G. J., Henry B. L. and Marshall J. F. (2000) Dopamine D1 receptors synergize with D2, but not D3 or D4, receptors in the striatum without the involvement of action potentials. J. Neurosci. 20, 66666671.
  • Landwehrmeyer G. B., Standaert D. G., Testa C. M., Penney J. B. Jr and Young A. B. (1995) NMDA receptor subunit mRNA expression by projection neurons and interneurons in rat striatum. J. Neurosci. 15, 52975307.
  • Laurie D. J. and Seeburg P. H. (1994) Ligand affinities at recombinant N-methyl-d-aspartate receptors depend on subunit composition. Eur. J. Pharmacol. 268, 335345.DOI: 10.1016/0922-4106(94)90058-2
  • Li Y. and Wolf M. E. (1997) Ibotenic acid lesions of prefrontal cortex do not prevent expression of behavioral sensitization to amphetamine. Behav. Brain Res. 84, 285289.DOI: 10.1016/S0166-4328(96)00158-1
  • Li Y., Kolb B. and Robinson T. E. (2003) The location of persistent amphetamine-induced changes in the density of dendritic spines on medium spiny neurons in the nucleus accumbens and caudate-putamen. Neuropsychopharmacology 28, 10821085.
  • Liste I., Rozas G., Guerra M. J. and Labandeira-Garcia J. L. (1995) Cortical stimulation induces Fos expression in striatal neurons via NMDA glutamate and dopamine receptors. Brain Res. 700, 112.DOI: 10.1016/0006-8993(95)00958-S
  • Martin L. J., Blackstone C. D., Levey A. I., Huganir R. L. and Price D. L. (1993) AMPA glutamate receptor subunits are differentially distributed in rat brain. Neuroscience 53, 327358.DOI: 10.1016/0306-4522(93)90199-P
  • Mazzucchelli C., Vantaggiato C., Ciamei A. et al. (2002) Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron 34, 807820.DOI: 10.1016/S0896-6273(02)00716-X
  • McGeorge A. J. and Faull R. L. (1989) The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29, 503537.DOI: 10.1016/0306-4522(89)90128-0
  • Nestler E. J. (2001) Molecular basis of long-term plasticity underlying addiction. Nat. Rev. Neurosci. 2, 119128.DOI: 10.1038/35053570
  • Nestler E. J., Hope B. T. and Widnell K. L. (1993) Drug addiction: a model for the molecular basis of neural plasticity. Neuron 11, 9951006.DOI: 10.1016/0896-6273(93)90213-B
  • Nieoullon A., Cheramy A. and Glowinski J. (1978) Release of dopamine evoked by electrical stimulation of the motor and visual areas of the cerebral cortex in both caudate nuclei and in the substantia nigra in the cat. Brain Res. 145, 6983.DOI: 10.1016/0006-8993(78)90797-7
  • Ostrander M. M., Badiani A., Day H. E., Norton C. S., Watson S. J., Akil H. and Robinson T. E. (2003) Environmental context and drug history modulate amphetamine-induced c-fos mRNA expression in the basal ganglia, central extended amygdala, and associated limbic forebrain. Neuroscience 120, 551571.DOI: 10.1016/S0306-4522(03)00247-1
  • Parthasarathy H. B. and Graybiel A. M. (1997) Cortically driven immediate-early gene expression reflects modular influence of sensorimotor cortex on identified striatal neurons in the squirrel monkey. J. Neurosci. 17, 24772491.
  • Paxinos G. and Watson C. (1998) The Rat Brain in Stereotaxic Coordinates (4th edn). Academic, San Diego.
  • Quinlan E. M., Philpot B. D., Huganir R. L. and Bear M. F. (1999) Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nat. Neurosci. 2, 352357.
  • Robinson T. E. and Kolb B. (1997) Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. J. Neurosci. 17, 84918497.
  • Robinson T. E. and Kolb B. (1999) Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur. J. Neurosci. 11, 15981604.DOI: 10.1046/j.1460-9568.1999.00576.x
  • Ruskin D. N. and Marshall J. F. (1994) Amphetamine- and cocaine-induced fos in the rat striatum depends on D2 dopamine receptor activation. Synapse 18, 233240.
  • Salzmann J., Marie-Claire C., Le Guen S., Roques B. P. and Noble F. (2003) Importance of ERK activation in behavioral and biochemical effects induced by MDMA in mice. Br. J. Pharmacol. 140, 831838.DOI: 10.1038/sj.bjp.0705506
  • Sgambato V., Abo V., Rogard M., Besson M. J. and Deniau J. M. (1997) Effect of electrical stimulation of the cerebral cortex on the expression of the Fos protein in the basal ganglia. Neuroscience 81, 93112.DOI: 10.1016/S0306-4522(97)00179-6
  • Sgambato V., Pages C., Rogard M., Besson M. J. and Caboche J. (1998) Extracellular signal-regulated kinase (ERK) controls immediate early gene induction on corticostriatal stimulation. J. Neurosci. 18, 88148825.
  • Snyder-Keller A. M. (1991) Striatal c-fos induction by drugs and stress in neonatally dopamine-depleted rats given nigral transplants: importance of NMDA activation and relevance to sensitization phenomena. Exp. Neurol. 113, 155165.DOI: 10.1016/0014-4886(91)90171-8
  • Sommer W. and Fuxe K. (1997) On the role of c-fos expression in striatal transmission. The antisense oligonucleotide approach. Neurochem. Int. 31, 425436.DOI: 10.1016/S0197-0186(96)00112-X
  • Spencer H. J. (1976) Antagonism of cortical excitation of striatal neurons by glutamic acid diethyl ester: evidence for glutamic acid as an excitatory transmitter in the rat striatum. Brain Res. 102, 91101.DOI: 10.1016/0006-8993(76)90577-1
  • Standaert D. G., Testa C. M., Young A. B. and Penney J. B. Jr (1994) Organization of N-methyl-d-aspartate glutamate receptor gene expression in the basal ganglia of the rat. J. Comp. Neurol. 343, 116.
  • Standaert D. G., Friberg I. K., Landwehrmeyer G. B., Young A. B. and Penney J. B. Jr (1999) Expression of NMDA glutamate receptor subunit mRNAs in neurochemically identified projection and interneurons in the striatum of the rat. Brain Res. Mol. Brain Res. 64, 1123.
  • Tang Y. P., Shimizu E., Dube G. R., Rampon C., Kerchner G. A., Zhuo M., Liu G. and Tsien J. Z. (1999) Genetic enhancement of learning and memory in mice. Nature 401, 6369.DOI: 10.1038/43432
  • Thomas M. J., Malenka R. C. and Bonci A. (2000) Modulation of long-term depression by dopamine in the mesolimbic system. J. Neurosci. 20, 55815586.
  • Thomas M. J., Beurrier C., Bonci A. and Malenka R. C. (2001) Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine. Nat. Neurosci. 4, 12171223.DOI: 10.1038/nn757
  • Uslaner J., Badiani A., Day H. E., Watson S. J., Akil H. and Robinson T. E. (2001a) Environmental context modulates the ability of cocaine and amphetamine to induce c-fos mRNA expression in the neocortex, caudate nucleus, and nucleus accumbens. Brain Res. 920, 106116.DOI: 10.1016/S0006-8993(01)03040-2
  • Uslaner J., Badiani A., Norton C. S., Day H. E., Watson S. J., Akil H. and Robinson T. E. (2001b) Amphetamine and cocaine induce different patterns of c-fos mRNA expression in the striatum and subthalamic nucleus depending on environmental context. Eur. J. Neurosci. 13, 19771983.DOI: 10.1046/j.0953-816x.2001.01574.x
  • Uslaner J. M., Crombag H. S., Ferguson S. M. and Robinson T. E. (2003a) Cocaine-induced psychomotor activity is associated with its ability to induce c-fos mRNA expression in the subthalamic nucleus: effects of dose and repeated treatment. Eur. J. Neurosci. 17, 21802186.DOI: 10.1046/j.1460-9568.2003.02638.x
  • Uslaner J. M., Norton C. S., Watson S. J., Akil H. and Robinson T. E. (2003b) Amphetamine-induced c-fos mRNA expression in the caudate–putamen and subthalamic nucleus: interactions between dose, environment, and neuronal phenotype. J. Neurochem. 85, 105114.
  • Valjent E., Corvol J. C., Pages C., Besson M. J., Maldonado R. and Caboche J. (2000) Involvement of the extracellular signal-regulated kinase cascade for cocaine-rewarding properties. J. Neurosci. 20, 87018709.
  • Vanhoutte P., Barnier J. V., Guibert B., Pages C., Besson M. J., Hipskind R. A. and Caboche J. (1999) Glutamate induces phosphorylation of Elk-1 and CREB, along with c-fos activation, via an extracellular signal-regulated kinase-dependent pathway in brain slices. Mol. Cell. Biol. 19, 136146.
  • Vargo J. M. and Marshall J. F. (1995) Time-dependent changes in dopamine agonist-induced striatal Fos immunoreactivity are related to sensory neglect and its recovery after unilateral prefrontal cortex injury. Synapse 20, 305315.
  • Vargo J. M. and Marshall J. F. (1996) Frontal cortex ablation reversibly decreases striatal zif/268 and junB expression: temporal correspondence with sensory neglect and its spontaneous recovery. Synapse 22, 291303.DOI: 10.1002/(SICI)1098-2396(199604)22:4<291::AID-SYN1>3.3.CO;2-U
  • Vicini S., Wang J. F., Li J. H., Zhu W. J., Wang Y. H., Luo J. H., Wolfe B. B. and Grayson D. R. (1998) Functional and pharmacological differences between recombinant N-methyl-d-aspartate receptors. J. Neurophysiol. 79, 555566.
  • Wang J. Q., Daunais J. B. and McGinty J. F. (1994) NMDA receptors mediate amphetamine-induced upregulation of zif/268 and preprodynorphin mRNA expression in rat striatum. Synapse 18, 343353.
  • Willuhn I., Sun W. and Steiner H. (2003) Topography of cocaine-induced gene regulation in the rat striatum: relationship to cortical inputs and role of behavioural context. Eur. J. Neurosci. 17, 10531066.
  • Wolf M. E., Dahlin S. L., Hu X. T., Xue C. J. and White K. (1995) Effects of lesions of prefrontal cortex, amygdala, or fornix on behavioral sensitization to amphetamine: comparison with N-methyl-d-aspartate antagonists. Neuroscience 69, 417439.DOI: 10.1016/0306-4522(95)00248-H
  • Wu G. Y., Deisseroth K. and Tsien R. W. (2001) Spaced stimuli stabilize MAPK pathway activation and its effects on dendritic morphology. Nat. Neurosci. 4, 151158.DOI: 10.1038/83976
  • Wullner U., Standaert D. G., Testa C. M., Landwehrmeyer G. B., Catania M. V., Penney J. B. Jr and Young A. B. (1994) Glutamate receptor expression in rat striatum: effect of deafferentation. Brain Res. 647, 209219.DOI: 10.1016/0006-8993(94)91320-X
  • Xia Z., Dudek H., Miranti C. K. and Greenberg M. E. (1996) Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J. Neurosci. 16, 54255436.
  • Zukin R. S. and Bennett M. V. (1995) Alternatively spliced isoforms of the NMDARI receptor subunit. Trends Neurosci. 18, 306313.DOI: 10.1016/0166-2236(95)93920-S