• calcium;
  • dinitrophenol;
  • excitotoxicity;
  • mitochondrial;
  • membrane potential;
  • reactive oxygen species


Mitochondrial dysfunction, resulting from the disruption of calcium homeostasis and the generation of toxic reactive oxygen species, is a central process leading to neuronal injury and death following acute CNS insults. Interventions aimed at preventing disturbances in mitochondrial function have therefore become targets of intense investigation. Mitochondrial uncoupling is a condition in which electron transport is disconnected from the production of ATP. As a consequence, there is a decrease in the mitochondrial membrane potential, which can temporarily decrease calcium influx and attenuate free radical formation. The potential use of pharmacological agents with uncoupling properties may provide a novel therapeutic approach for the treatment of acute neuronal injury.