SEARCH

SEARCH BY CITATION

References

  • Balázs R. (1965) Control of glutamate metabolism. The effect of pyruvate. J. Neurochem. 12, 6376.
  • Balázs R., Hack N. and Jørgensen O. S. (1988a) Stimulation of the N-methyl-d-aspartate receptor has a trophic effect on differentiating cerebellar granule cells. Neurosci. Lett. 87, 8086.
  • Balázs R., Jørgensen O. S. and Hack N. (1988b) N-methyl-d-aspartate promotes the survival of cerebellar granule cells in culture. Neuroscience 27, 437451.
  • Balázs R., Gallo V. and Kingsbury A. (1988c) Effect of depolarization on the maturation of cerebellar granule cells in culture. Dev. Brain Res. 40, 269276.
  • Belhage B., Rehder V., Hansen G. H., Kater S. B. and Schousboe A. (1992) 3H-d-aspartate release from cerebellar granule neurons is differentially regulated by glutamate- and K+-stimulation. J. Neurosci. Res. 33, 436444.
  • Belhage B., Hansen G. H. and Schousboe A. (1993) Depolarization by K+ and glutamate activates different neurotransmitter release mechanisms in GABAergic neurons: vesicular versus non-vesicular release of GABA. Neuroscience 54, 10191034.
  • Belhage B., Hansen G. H., Elster L. and Schousboe A. (1998) Effects of γ-aminobutyric acid (GABA) on synaptogenesis and synaptic function. Perspect. Dev. Neurobiol. 5, 235246.
  • Borden L. A. (1996) GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem. Int. 29, 335356.
  • Chaudhry F. A., Reimer R. J., Bellocchio E. E., Danbolt N. C., Osen K. K., Edwards R. H. and Storm-Mathisen J. (1998) The vesicular GABA transporter, VGAT, localizes to synaptic vesicles in sets of glycinergic as well as GABAergic neurons. J. Neurosci. 18, 97339750.
  • Chhina N., Kuestermann E., Halliday J., Simpson L. J., Macdonald I. A., Bachelard H. S. and Morris P. G. (2001) Measurement of human tricarboxylic acid cycle rates during visual activation by 13C magnetic resonance spectroscopy. J. Neurosci. Res. 66, 737746.
  • Cooper A. J. (1988) l-Glutamate (2-oxoglutarate) aminotransferases, in Glutamine and Glutamate in Mammals, Vol. 2 (Kvamme, E., ed.), pp. 123152. CRC Press, Florida.
  • Damgaard I., Trenkner E., Sturman J. A. and Schousboe A. (1996) Effect of K+- and kainate-mediated depolarization on survival and functional maturation of GABAergic and glutamatergic neurons in cultures of dissociated mouse cerebellum. Neurochem. Res. 21, 267275.
  • Drejer J. and Schousboe A. (1989) Selection of a pure cerebellar granule cell culture by kainate treatment. Neurochem. Res. 14, 751754.
  • Drejer J., Larsson O. M. and Schousboe A. (1982) Characterization of l-glutamate uptake into and release from astrocytes and neurons cultured from different brain regions. Exp. Brain Res. 47, 259269.
  • Drejer J., Honoré T. and Schousboe A. (1987) Excitatory amino acid induced release of 3H-GABA from cultured mouse cerebral cortex interneurons. J. Neurosci. 7, 29102916.
  • Frandsen A. and Schousboe A. (1990) Development of excitatory amino acid induced cytotoxicity in cultured neurons. Int. J. Dev. Neurosci. 8, 209216.DOI: 10.1016/0736-5748(90)90013-R
  • Gallo V., Kingsbury A., Balázs R. and Jørgensen O. S. (1987) The role of depolarization in the survival and differentiation of cerebellar granule cells in culture. J. Neurosci. 7, 22032213.
  • Geddes J. W. and Wood J. D. (1984) Changes in the amino acid content of nerve endings (synaptosomes) induced by drugs that alter the metabolism of glutamate and γ-aminobutyric acid. J. Neurochem. 42, 1624.
  • Hassel B., Sonnewald U. and Fonnum F. (1995a) Glial–neuronal interactions as studied by cerebral metabolism of [2−13C]acetate and [1−13C]glucose: an ex vivo13C-NMR spectroscopic study. J. Neurochem. 64, 27732782.
  • Hassel B., Westergaard N., Schousboe A. and Fonnum F. (1995b) Metabolic differences between primary cultures of astrocytes and neurons from cerebellum and cerebral cortex. Effects of fluorocitrate. Neurochem. Res. 20, 413420.
  • Hertz E., Yu A. C. H., Hertz L., Juurlink B. H. J. and Schousboe A. (1989) Preparation of primary cultures of mouse cortical neurons, in A Dissection and Tissue Culture Manual for the Nervous System (Shahar, A. De Vellis, J. Vernadakis, A. and Haber, B., eds), pp. 183186. Liss, New York.
  • Hertz L. and Schousboe A. (1987) Primary cultures of GABAergic and glutamatergic neurons as model systems to study neurotransmitter functions. I. Differentiated cells, in Model Systems of Development and Aging of the Nervous System, (Vernadakis, A. Privat, A. Lauder, J. M. Timiras, P. S. and Giacobini, E., eds), pp. 1931. Martinus-Nijhoff, Boston.
  • Hertz L., Juurlink B. H. J. and Szuchet S. (1985) Cell cultures, in Handbook of Neurochemistry (Latja, A., ed.), pp. 603661. Plenum Press, New York.
  • Kovacs A. D., Cebers G., Cebere A. and Liljequist S. (2003) Loss of GABAergic neuronal phenotype in primary cerebellar cultures following blockade of glutamate reuptake. Brain Res. 977, 209220.DOI: 10.1016/S0006-8993(03)02682-9
  • Lasher R. S. and Zagon I. S. (1972) The effect of potassium on neuronal differentiation in cultures of dissociated newborn rat cerebellum. Brain Res. 41, 482488.DOI: 10.1016/0006-8993(72)90521-5
  • Lerma J. (1998) Kainate receptors: an interplay between excitatory and inhibitory synapses. FEBS Lett. 430, 100104.DOI: 10.1016/S0014-5793(98)00462-1
  • Martin D. L. and Rimvall K. (1993) Regulation of γ-aminobutyric acid synthesis in the brain. J. Neurochem. 60, 395407.
  • Messer A. (1977) The maintenance and identification of mouse cerebellar granule cells in monolayer cultures. Brain Res. 130, 112.DOI: 10.1016/0006-8993(77)90838-1
  • Oz G., Henry P. G., Seaquist E. R. and Gruetter R. (2003) Direct, noninvasive measurement of brain glycogen metabolism in humans. Neurochem. Int. 43, 323329.DOI: 10.1016/S0197-0186(03)00019-6
  • Palaiologos G., Hertz L. and Schousboe A. (1988) Evidence that aspartate amino transferase activity and ketodicarboxylate carrier function are essential for biosynthesis of transmitter glutamate. J. Neurochem. 51, 317320.
  • Palaiologos G., Hertz L. and Schousboe A. (1989) Role of aspartate aminotransferase and mitochondrial dicarboxylate transport for release of endogenously and exogenously supplied neurotransmitter in glutamatergic neurons. Neurochem. Res. 14, 359366.
  • Pearce B. R., Currie D. N., Beale R. and Dutton G. R. (1981) Potassium-stimulated, calcium-dependent release of [3H]GABA from neuron- and glia-enriched cultures of cells dissociated from rat cerebellum. Brain Res. 206, 485489.DOI: 10.1016/0006-8993(81)90552-7
  • Qu H., Waagepetersen H. S., Van Hengel M., Wolt S., Dale O., Unsgard G., Sletvold O., Schousboe A. and Sonnewald U. (2000) Effects of thiopental on transport and metabolism of glutamate in cultured cerebellar granule neurones. Neurochem. Int. 37, 207215.DOI: 10.1016/S0197-0186(00)00024-3
  • Rossi D. J., Hamann M. and Attwell D. (2003) Multiple modes of GABAergic inhibition of rat cerebellar granule cells. J. Physiol. 548, 97110.
  • Saito K., Wu J.-Y., Matsuda T., Roberts E. and Vaughn J. E. (1974) Immunohistochemical localization of glutamate decarboxylase in cerebellum. Proc. Natl Acad. Sci. USA 71, 269273.
  • Schousboe A., Fosmark H. and Hertz L. (1975) High content of glutamate and of ATP in astrocytes cultured from rat brain hemispheres: effect of serum withdrawal and of cyclic AMP. J. Neurochem. 25, 909911.
  • Schousboe A., Meier E., Drejer J. and Hertz L. (1989) Preparation of primary cultures of mouse (rat) cerebellar granule cells, in A Dissection and Tissue Culture Manual for the Nervous System (Shahar, A. De Vellis, J. Vernadakis, A. and Haber, B., eds), pp. 183186. Liss, New York.
  • Schousboe A., Sarup A., Bak L. K., Waagepetersen H. S. and Larsson O. M. (2004) Role of astrocytic transport processes in glutamatergic and GABAergic neurotransmission. Neurochem. Int. 45, 521527.DOI: 10.1016/j.neuint.2003.11.001
  • Schwarzer C. and Sperk G. (1995) Hippocampal granule cells express glutamic acid decarboxylase-67 after limbic seizures in the rat. Neuroscience 69, 705709.DOI: 10.1016/0306-4522(95)00348-M
  • Seil F. J., Blank N. K. and Leiman A. L. (1979) Toxic effects of kainic acid on mouse cerebellum in tissue culture. Brain Res. 161, 253265.DOI: 10.1016/0006-8993(79)90067-2
  • Simmons M. L. and Dutton G. R. (1992) Neuronal origins of K+-evoked amino acid release from cerebellar cultures. J. Neurosci. Res. 31, 646653.
  • Sonnewald U., Westergaard N., Krane J., Unsgard G., Petersen S. B. and Schousboe. A. (1991) First direct demonstration of preferential release of citrate from astrocytes using [13C]NMR spectroscopy of cultured neurons and astrocytes. Neurosci. Lett. 128, 235239.DOI: 10.1016/0304-3940(91)90268-X
  • Sonnewald U., Westergaard N., Schousboe A., Svendsen J. S., Unsgard G. and Petersen S. B. (1993) Direct demonstration by 13C-NMR spectroscopy that glutamine from astrocytes is a precursor for GABA synthesis in neurons. Neurochem. Int. 22, 1929.DOI: 10.1016/0197-0186(93)90064-C
  • Sperk G., Schwarzer C., Heilman J., Furtinger S., Reimer R. J., Edwards R. H. and Nelson N. (2003) Expression of plasma membrane GABA transporters but not of the vesicular GABA transporter in dentate granule cells after kainic acid seizures. Hippocampus 13, 806815.DOI: 10.1002/hipo.10133
  • Thangnipon W., Kingsbury A., Webb M. and Balazs R. (1983) Observations on rat cerebellar cells in vitro: influence of substratum, potassium concentration and relationship between neurones and astrocytes. Brain Res. 313, 177189.DOI: 10.1016/0165-3806(83)90215-8
  • Waagepetersen H. S., Bakken I. J., Larsson O. M., Sonnewald U. and Schousboe A. (1998) Comparison of lactate and glucose metabolism in cultured neocortical neurones and astrocytes using 13C-NMR spectroscopy. Dev. Neurosci. 20, 310320.DOI: 10.1159/000017326
  • Waagepetersen H. S., Sonnewald U., Larsson O. M. and Schousboe A. (2000) A possible role of alanine for ammonia transfer between astrocytes and glutamatergic neurons. J. Neurochem. 75, 471479.DOI: 10.1046/j.1471-4159.2000.0750471.x
  • Waagepetersen H. S., Sonnewald U., Gegelashvili G., Larsson O. M. and Schousboe A. (2001) Metabolic distinction between vesicular and cytosolic GABA in cultured GABAergic neurons using 13C-MRS. J. Neurosci. Res. 63, 347355.DOI: 10.1002/1097-4547(20010215)63:4<347::AID-JNR1029>3.0.CO;2-G
  • Waagepetersen H. S., Qu H., Hertz L., Sonnewald U. and Schousboe A. (2002) Demonstration of pyruvate recycling in primary cultures of neocortical astrocytes but not in neurons. Neurochem. Res. 27, 14311437.DOI: 10.1023/A:1021636102735
  • Westergaard N., Sonnewald U., Petersen S. B. and Schousboe A. (1995) Glutamate and glutamine metabolism in cultured GABAergic neurones studied by 13C-NMR spectroscopy may indicate compartmentation and mitochondrial heterogeneity. Neurosci. Lett. 185, 2428.DOI: 10.1016/0304-3940(94)11216-6
  • Young A. B., Oster-Granite M. L., Herndon R. M. and Snyder S. H. (1974) Glutamic acid: selective depletion by viral-induced granule cell loss in hamster cerebellum. Brain Res. 73, 113.DOI: 10.1016/0006-8993(74)91002-6
  • Yu A. C. H., Hertz E. and Hertz L. (1984) Alterations in uptake and release rates for GABA, glutamate, and glutamine during biochemical maturation of highly purified cultures of cerebral cortical neurons, a GABAergic preparation. J. Neurochem. 42, 951960.