SEARCH

SEARCH BY CITATION

References

  • Adachi K., Cruz N. F., Sokoloff L. and Dienel G. A. (1995) Labeling of metabolic pools by [6-14C]glucose during K+-induced stimulation of glucose utilization in rat brain. J. Cereb. Blood Flow Metab. 15, 97110.
  • Bergman E. N. (1990) Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70, 567590.
  • Berl S. and Frigyesi T. L. (1968) Metabolism of [14C]leucine and [14C]acetate in sensorimotor cortex, thalamus, caudate nucleus and cerebellum of the cat. J. Neurochem. 15, 965970.
  • Buckley B. M. and Williamson D. H. (1977) Origins of blood acetate in the rat. Biochem. J. 166, 539545.
  • Cerdan S., Künnecke B. and Seelig J. (1990) Cerebral metabolism of [1,2–13C2]acetate as detected by in vivo and in vitro13C NMR. J. Biol. Chem. 265, 12 91612 926.
  • Cremer J. E. (1971) Incorporation of label from d-β-hydroxyl[14C]butyrate and [3-14C]acetoacetate into amino acids in rat brain in vivo. Biochem. J. 122, 135138.
  • Cremer J. E. and Heath D. F. (1974) The estimation of rates of utilization of glucose and ketone bodies in the brain of the suckling rat using compartmental analysis of isotopic data. Biochem. J. 142, 527544.
  • Cremer J. E., Braun L. D. and Oldendorf W. H. (1976) Changes during development in transport processes of the blood–brain barrier. Biochim. Biophys. Acta 448, 633637.
  • Cremer J. E., Teal H. M., Heath D. F. and Cavanagh J. B. (1977) The influence of portocaval anastomosis on the metabolism of labeled octanoate, butyrate, and leucine in rat brain. J. Neurochem. 28, 215222.
  • Cremer J. E., Sarna C. S., Teal H. M. and Cunningham V. J. (1978) Amino acid precursors: Their transport into brain and initial metabolism, in Amino Acids as Chemical Transmitters. NATO Advanced Study Institutes series: Series A, Life Sciences (FonnumF., ed.), Vol. 16, pp. 669689. Plenum Press, New York.
  • Cremer J. E., Cunningham V. J., Pardridge W. M., Braun L. D. and Oldendorf W. H. (1979) Kinetics of blood–brain barrier transport of pyruvate, lactate and glucose in suckling, weanling and adult rats. J. Neurochem. 33, 439445.
  • DeVivo D. C., Leckie M. P. and Agrawal H. C. (1975) d-beta-Hydroxybutyrate: a major precursor of amino acids in developing rat brain. J. Neurochem. 25, 161170.
  • Dienel G. A. and Cruz N. F. (2003) Neighborly interactions of metabolically-activated astrocytes in vivo. Neurochem. Int. 43, 339354.
  • Dienel G. A. and Cruz N. F. (2004) Nutrition during brain activation: does cell-to-cell lactate shuttling contribute significantly to sweet and sour food for thought? Neurochem. Int. 45, 321351.
  • Dienel G. A. and Hertz L. (2001) Glucose and lactate metabolism during brain activation. J. Neurosci. Res. 66, 824838.
  • Dienel G. A., Liu K. and Cruz N. F. (2001a) Local uptake of 14C-labeled acetate and butyrate in rat brain in vivo during spreading cortical depression. J. Neurosci. Res. 66, 812820.
  • Dienel G. A., Popp D., Drew P. D., Ball K., Krisht A. and Cruz N. F. (2001b) Preferential labeling of glial and meningial brain tumors with [2–14C]acetate. J. Nucl. Med. 42, 12431250.
  • Dienel G. A., Wang R. Y. and Cruz N. F. (2002) Generalized sensory stimulation of conscious rats increases labeling of oxidative pathways of glucose metabolism when the brain glucose-oxygen uptake ratio rises. J. Cereb. Blood Flow Metab. 22, 14901502.
  • Ebert D., Haller R. G. and Walton M. E. (2003) Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J. Neurosci. 23, 59285935.
  • Edmond J. (1992) Energy metabolism in developing brain cells. Can. J. Physiol. Pharmacol. 70, S118S129.
  • Edmond J., Robbins R. A., Bergstrom J. D., Cole R. A. and De Vellis J. (1987) Capacity for substrate utilization in oxidative metabolism by neurons, astrocytes, and oligodendrocytes from developing brain in primary culture. J. Neurosci. Res. 18, 551561.
  • Enerson B. E. and Drewes L. R. (2003) Molecular features, regulation, and function of monocarboxylate transporters: implications for drug delivery. J. Pharm. Sci. 92, 15311544.
  • Eriksson G., Peterson A., Iverfeldt K. and Walum E. (1995) Sodium-dependent glutamate uptake as an activator of oxidative metabolism in primary astrocyte cultures from newborn rat. Glia 15, 152156.
  • Faingold C. L., Hoffmann W. E. and Caspary D. M. (1989) Effects of excitant amino acids on acoustic responses of inferior colliculus neurons. Hear. Res. 40, 127136.
  • Fink K., Cline R. E. and Fink R. M. (1963) Paper chromatography of several classes of compounds. Anal. Chem. 35, 389398.
  • Gruetter R. (2004) Principles of the measurement of neuro-glial metabolism using in vivo 13C NMR spectroscopy. Adv. Mol. Cell. Biol. 31, 409433.
  • Hassel B., Bachelard H., Jones P., Fonnum F. and Sonnewald U. (1997) Trafficking of amino acids between neurons and glia in vivo. Effects of inhibition of glial metabolism by fluoroacetate. J. Cereb. Blood Flow Metab. 17, 12301238.
  • Hawkins R. A., Mans A. M., Davis D. W., Vina J. R. and Hibbard L. S. (1985) Cerebral glucose use measured with [14C]glucose labeled in the 1, 2, or 6 position. Am. J. Physiol. 248, C170C176.
  • Hawkins R. A., Mans A. M. and Davis D. W. (1986) Regional ketone body utilization by rat brain in starvation and diabetes. Am. J. Physiol. 250, E169E178.
  • Hertz L. (1982) Astrocytes, in Handbook of Neurochemistry (LajthaA., ed.) 2nd edn, Vol. 1,Chemical and Cellular Architecture, pp. 319355. Plenum Press, New York.
  • Hertz L. and Peng L. (1992) Energy metabolism at the cellular level of the CNS. Can. J. Physiol. Pharmacol. 70, S145S157.
  • Hertz E., Shargool M. and Hertz L. (1986) Effects of barbiturates on energy metabolism by cultured astrocytes and neurons in the presence of normal and elevated concentrations of potassium. Neuropharmacology 25, 533539.
  • Hetenyi G. Jr, Lussier B., Ferrarotto C. and Radziuk J. (1982) Calculation of the rate of gluconeogenesis from the incorporation of 14C atoms from labelled bicarbonate or acetate. Can. J. Physiol. Pharmacol. 60, 16031609.
  • Hu B., Senatorov V. and Mooney D. (1994) Lemniscal and non-lemniscal synaptic transmission in rat auditory thalamus. J. Physiol. 479, 217231.
  • Knowles S. E., Jarrett I. G., Filsell O. H. and Ballard F. J. (1974) Production and utilization of acetate in mammals. Biochem. J. 142, 401411.
  • Künnecke B., Cerdan S. and Seelig J. (1993) Cerebral metabolism of [1,2-13C2]glucose and [U-13C4]3-hydroxybutyrate in rat brain as detected by 13C NMR spectroscopy. NMR Biomed. 6, 264277.
  • LaManna J. C., Harrington J. F., Vendell L. M., Abi-Saleh K., Lust W. D. and Harik S. I. (1993) Regional blood–brain lactate influx. Brain Res. 614, 164170.
  • Lear J. L. and Ackermann R. F. (1988) Comparison of cerebral glucose metabolic rates measured with fluorodeoxyglucose and glucose labeled in the 1, 2, 3–4, and 6 positions using double label quantitative digital autoradiography. J. Cereb. Blood Flow. Metab. 8, 575585.
  • Lear J. L. and Ackermann R. F. (1990) Evaluation of radiolabeled acetate and fluoroacetate as potential tracers of cerebral oxidative metabolism. Metab. Brain Dis 5, 4556.
  • Lebon V., Petersen K. F., Cline G. W., Shen J., Mason G. F., Dufour S., Behar K. L., Shulman G. I. and Rothman D. L. (2002) Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism. J. Neurosci. 22, 15231531.
  • Martinez-Hernandez A., Bell K. and Norenberg M. (1977) Glutamine synthetase: glial localization in brain. Science 195, 13561358.
  • McKenna M. C., Sonnewald U., Huang X., Stevenson J. and Zielke H. R. (1996) Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J. Neurochem. 66, 386393.
  • McNeil N. I. (1984) The contribution of the large intestine to energy supplies in man. Am. J. Clin. Nutr. 39, 338342.
  • Minchin M. C. W. and Beart P. M. (1975) Compartmentation of amino acid metabolism in the rat dorsal root ganglion: a metabolic and autoradiographic study. Brain Res. 83, 437449.
  • Muir D., Berl S. and Clarke D. D. (1986) Acetate and fluoroacetate as possible markers for glial metabolism in vivo. Brain Res. 380, 336340.
  • Nudo R. J. and Masterton R. B. (1986) Stimulation-induced [14C]2-deoxyglucose labeling of synaptic activity in the central auditory system. J. Comp. Neurol. 245, 553565.
  • O'Neal R. M. and Koeppe R. E. (1966) Precursors in vivo of glutamate, aspartate and their derivatives of rat brain. J. Neurochem. 13, 835847.
  • O'Neal R. M., Koeppe R. E. and Williams E. L. (1966) Utilization in vivo of glucose and volatile fatty acids by sheep brain for the synthesis of acidic amino acids. Biochem. J. 101, 591597.
  • Oldendorf W. H. (1973) Carrier-mediated blood–brain barrier transport of short-chain monocarboxylic organic acids. Am. J. Physiol. 224, 14501453.
  • Ottersen O. P., Zhang N. and Walberg F. (1992) Metabolic compartmentation of glutamate and glutamine: morphological evidence obtained by quantitative immunocytochemistry in rat cerebellum. Neuroscience 46, 519534.
  • Pan J. W., De Graaf R. A., Petersen K. F., Shulman G. I., Hetherington H. P. and Rothman D. L. (2002) [2,4-13C2]-beta-Hydroxybutyrate metabolism in human brain. J. Cereb. Blood Flow Metab. 22, 890898.
  • Patel A. J. and Balazs R. (1970) Manifestation of metabolic compartmentation during the maturation of the rat brain. J. Neurochem. 17, 955971.
  • Peng L., Swanson R. A. and Hertz L. (2001) Effects of l-glutamate, d-aspartate, and monensin on glycolytic and oxidative glucose metabolism in mouse astrocyte cultures: further evidence that glutamate uptake is metabolically driven by oxidative metabolism. Neurochem. Int. 38, 437443.
  • Pouteau E., Maugere P., Darmaun D., Marchini J. S., Piloquet H., Dumon H., Nguyen P. and Krempf M. (1998) Role of glucose and glutamine synthesis in the differential recovery of 13CO2 from infused [2–13C]- versus [1–13C]acetate. Metabolism 47, 549554.
  • Sarna C. S., Bradbury M. W. B., Cremer J. E., Lai J. C. K. and Teal H. M. (1979) Brain metabolism and specific transport at the blood–brain barrier after portacaval anastomosis in the rat. Brain Res. 160, 6983.
  • Shank R. P., Leo G. C. and Zielke H. R. (1993) Cerebral metabolic compartmentation as revealed by nuclear magnetic resonance analysis of d-[1-13C]glucose metabolism. J. Neurochem. 61, 315323.
  • Sharp F. R., Ryan A. F., Goodwin P. and Woolf N. K. (1981) Increasing intensities of wide band noise increase [14C]2-deoxyglucose uptake in gerbil central auditory structures. Brain Res. 230, 8796.
  • Shulman R. G., Rothman D. L., Behar K. L. and Hyder F. (2004) Energetic basis of brain activity: implications for neuroimaging. Trends Neurosci. 27, 489495.
  • Sokoloff L. (1986) Cerebral circulation, energy metabolism, and protein synthesis. General characteristics and principles of measurement, in Positron Emission Tomography and Autoradiography: Principles and Applications for the Brain and Heart (PhelpsM., MazziottaJ. and SchelbertH., eds), pp. 171. Raven Press, New York.
  • Sokoloff L., Reivich M., Kennedy C., Des Rosiers M. H., Patlak C. S., Pettigrew K. D., Sakurada O. and Shinohara M. (1977) The [14C]deoxyglucose method for the measurement of local glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28, 897916.
  • Tyce G. M., Ogg J. and Owen C. A. Jr (1981) Metabolism of acetate to amino acids in brains of rats after complete hepatectomy. J. Neurochem. 36, 640650.
  • Van den Berg C. J. and Garfinkel D. (1971) A simulation study of brain compartments. Metabolism of glutamate and related substances in mouse brain. Biochem. J. 123, 211218.
  • Van den Berg C. J. and Ronda G. (1976a) The incorporation of double-labelled acetate into glutamate and related amino acids from adult mouse brain: compartmentation of amino acid metabolism in brain. J. Neurochem. 27, 14431448.
  • Van den Berg C. J. and Ronda G. (1976b) Metabolism of glutamate and related amino acids in the 10-day-old mouse brain. experiments with labelled acetate and beta-hydroxybutyrate. J. Neurochem. 27, 14491453.
  • Van den Berg C. J., Krzalic L., Mela P. and Waelsch H. (1969) Compartmentation of glutamate metabolism in brain. Evidence for the existence of two different tricarboxylic acid cycles in brain. Biochem. J. 113, 281290.
  • Wang R. Y. and Dienel G. A. (1994) Ion chromatography with suppressed conductivity detection: recoveries of 14C-labeled metabolites. Biotechniques 17, 106113.
  • Waniewski R. A. and Martin D. L. (1998) Preferential utilization of acetate by astrocytes is attributable to transport. J. Neurosci. 18, 52255233.
  • Webster W. R., Serviere J., Martin R. and Brown M. (1985) Uncrossed and crossed inhibition in the inferior colliculus of the cat. a combined 2-deoxyglucose and electrophysiological study. J. Neurosci. 5, 18201832.
  • Yu A. C., Schousboe A. and Hertz L. (1982) Metabolic fate of 14C-labeled glutamate in astrocytes in primary cultures. J. Neurochem. 39, 954960.